

Kai Sauerwald
FernUniversität in Hagen, Germany

New Results on Preferential Reasoning

Helsinki Logic Seminar, 21.01.2026

Joint work with Arne Meier and Juha Kontinen

Introduction and Motivation

1.

Logic Background

2.

Preferential Logics

Axiomatics

3.

Complexity

4.

Conclusion

Introduction and Motivation

1.

Logic Background

2.

Preferential Logics

Axiomatics

3.

Complexity

4.

Conclusion

combine

Preferential Reasoning

(injection of extra-logical information into reasoning)

and

Team-based Reasoning

(reasoning in presence of plurality of objects)

Motivation I: Reasoning over different data sources

Living in a world of many sensors:

- Provide large amounts of data
- Different reliability

One scenario:

- Set of sensors $\mathcal{S} = \{s_1, s_2, \dots\}$
- Each sensor s has a database $\ell(s)$
- \prec ordering over the sensors; meaning:

$s_1 \prec s_2$ if s_1 is strictly more reliable than s_2

Research question:

- Sensor s supports α , if α holds in $\ell(s)$
- Investigate the following kind of reasoning

$\alpha \succsim \beta$ if β is supported by the most reliable sensors s_1 whose data support α

Essentially: combination of preferential reasoning with team-based reasoning

Motivation II: Epistemic Indistinguishability

Agents might not be able to distinguish all possible worlds

- Considered in Kripke semantics of Epistemic Modal Logic
- States are possible worlds
- Reachability relation = indistinguishability relation

Combination of with preferential reasoning in classical setting difficult

- Classical languages cannot to not have the means
- Combining preferences with Kripke-structures is cumbersome/unclear

Potential approach: combination of preferential reasoning with team-based reasoning

E.g, permits investigation of the following kind of reasoning:

$$\alpha \sim \beta \text{ if it is plausible that when the agent believes } \alpha, \text{ then also } \beta$$

Motivation III: Theoretical Advancement

Preferential Reasoning has many been study with classical logics in mind

Closure under Boolean operations is not always given

- Learned system
- Also classical systems are not always Boolean, e.g., context-free languages

Team-based logics

- Connective are not classical
- Well studied and understood
- Intuition and perspectives known

Promising testbed for study preferential reasoning: combination with team-based reasoning

Introduction and Motivation

1.

Logic Background

2.

Preferential Logics

Axiomatics

3.

Complexity

4.

Conclusion

CPL – Propositional Logic with Classical Semantics

Syntax: $\varphi ::= \Sigma \mid \neg\varphi \mid \top \mid \perp \mid \varphi \wedge \varphi \mid \varphi \vee \varphi$

Semantics: via valuation functions

PDL – Propositional Dependence Logic

Syntax: $\varphi ::= \Sigma \mid \neg\Sigma \mid \top \mid \perp \mid \varphi \wedge \varphi \mid \varphi \vee \varphi \mid =(\vec{\Sigma}, \Sigma)$

Semantics: via teams (sets of valuation functions)

TPL – Propositional Logic with Team-semantics

Syntax: $\varphi ::= \Sigma \mid \neg\Sigma \mid \top \mid \perp \mid \varphi \wedge \varphi \mid \varphi \vee \varphi$

Semantics: via teams (sets of valuation functions)

+ their preferential versions CPL^{pref}, PDL^{pref}, and TPL^{pref}
(next section)

Propositional Dependence Logic: Syntax

Language of propositional dependence logic PDL over $\Sigma = \{p_1, \dots, p_n\}$:

$$\varphi ::= \Sigma \mid \neg \Sigma \mid \top \mid \perp \mid \varphi \wedge \varphi \mid \varphi \vee \varphi \mid =(\vec{\Sigma}, \Sigma)$$

Notable aspects:

Negation only in literals

- $\neg p \vee \neg q$ (valid formula)
- $\neg(p \wedge q)$ (invalid formula)
- Not closed under negation!

Dependence atoms

- $= (a_1, \dots, a_m, b)$
- value of b depends on a_1, \dots, a_m

Example formulas:

- $\neg g \vee a$ (g „implies“ a)
- $= (a, b) \wedge a$ (a holds and b depends on a)
- $= (c)$ (c has always the same value)

Propositional Dependence Logic: Semantics

Classical Interpretations (propositional logic):

$$\Omega^c = \{ v \mid v : \Sigma \rightarrow \{0, 1\} \}$$

Team Semantics

Interpretations:

$$\Omega = \mathcal{P}(\Omega^c) = \{ X \mid X \subseteq \Omega^c \}$$

For $X \in \Omega$:

$$X \models p$$

iff for all $v \in X$, $v \models^c p$;

$$X \models \neg p$$

iff for all $v \in X$, $v \not\models^c p$;

$$X \models \perp$$

iff $X = \emptyset$;

$$X \models \top$$

is always the case;

$$X \models \alpha \wedge \beta$$

iff $X \models \alpha$ and $X \models \beta$;

$$X \models \alpha \vee \beta$$

iff there exist $Y, Z \subseteq X$ such that

$$X = Y \cup Z, Y \models \alpha \text{ and } Z \models \beta;$$

$$X \models =(\vec{a}, b)$$

iff for all $v, v' \in X$,

$$v(\vec{a}) = v'(\vec{a}) \text{ implies } v(b) = v'(b).$$

Illustration for $=(\vec{a}, b)$

Semantics of $=(\vec{a}, b)$

$X \models =(\vec{a}, b)$ iff for all $v, v' \in X$,
 $v(\vec{a}) = v'(\vec{a})$ implies $v(b) = v'(b)$.

Example

	a	b	c
v_1	1	1	0
v_2	1	0	1
v_3	0	1	1

	a	b	c
v_1	1	0	0
v_2	1	0	1

Evaluation works as follows:

$$X_1 \not\models =(\vec{a}, b)$$

$$X_2 \models =(\vec{a}, b)$$

$$X_1 \not\models =(b)$$

$$X_1 \models =(b) \vee =(b)$$

$$Y = \{v_1, v_3\} \quad Z = \{v_2\}$$

$$X_1 = Y \cup Z$$

$$Y \models =(b)$$

$$Z \models =(b)$$

Motivation for Dependence Logic I

Relational Databases

Interpret teams as database tables:

	a	b	c
v_1	0	1	0
v_2	1	1	0
v_3	0	1	1

Formulas \simeq integrity constraints.

$X \models \varphi$ amounts to checking whether φ holds for X .

Example:

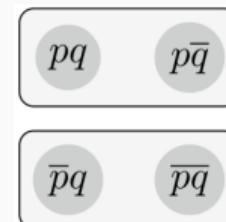
$X \models =(\text{id}, \text{col}_1) \wedge \dots \wedge =(\text{id}, \text{col}_n)$ is a key constraint.

Inquisitive logic (The Logic of Questions^a)

Define a question operator $?p$ by:

$$X \models ?p \text{ iff } X \models p \text{ or } X \models \neg p$$

Interpret teams as answers for a question.
Answers for $?p$:



but not for $(?p) \wedge = (p, q)$

^aCiardelli: Inquisitive Logic. Springer, 2022

Entailment for Dependence Logic

Model sets:

$$\text{Mod}(\alpha) = \{X \mid X \models \alpha\}$$

$$\text{Mod}(K) = \{X \mid \text{for all } \alpha \in K : X \models \alpha\}$$

Entailment \models^{PDL} and equivalence \equiv^{PDL} are defined as usual:

$$\alpha \models^{\text{PDL}} \beta \text{ if } \text{Mod}(\alpha) \subseteq \text{Mod}(\beta)$$

$$K \models^{\text{PDL}} \beta \text{ if } \text{Mod}(K) \subseteq \text{Mod}(\beta)$$

$$\alpha \equiv^{\text{PDL}} \beta \text{ if } \text{Mod}(\alpha) = \text{Mod}(\beta)$$

Intuition (databases):

$\alpha \models^{\text{PDL}} \beta$ if every database that complies with α also complies with β

Intuition (sensors):

$\alpha \models^{\text{PDL}} \beta$ if every sensor that supports α also supports β

Proposition

If $\alpha, \beta \in \text{PL}$ are classical propositional formulas (in NNF):

$\alpha \models^{\text{TPL}} \beta$ if and only if $\alpha \models^{\text{PDL}} \beta$ if and only if $\alpha \models^{\text{CPL}} \beta$

Possible World Interpretation – More expressible agents/knowledge bases?

Example (uncertain microbiologist):

$g \simeq$ has a certain gene

$b \simeq$ shines blue

$a \simeq$ eats amoebae

$$K = \{ b, =(g, b), \neg g \vee a \}$$

$=(g, b) \simeq$ blue shining is determined
by having the gene

$\neg g \vee a \simeq$ g implies a'

Teams that satisfy K :

$$X_1 = \begin{array}{c|ccc} & g & b & a \\ \hline v_1 & 1 & 1 & 1 \\ v_2 & 1 & 1 & 0 \end{array} \quad X_2 = \begin{array}{c|ccc} & g & b & a \\ \hline v_3 & 0 & 1 & 1 \end{array}$$

Proposal for interpretation:

- Teams as model sets of K
- Two layers:
 - ▶ worlds (=assignments)
 - ▶ joint observable worlds (=teams)

We have:

$$K \not\models a$$

$$K \not\models =(a)$$

$$K \not\models g$$

$$K \models =(g)$$

Introduction and Motivation

1.

Logic Background

2.

Preferential Logics

Axiomatics

3.

Complexity

4.

Conclusion

(Model-Theoretic) Logic $\mathcal{L} = \langle \mathcal{L}, \Omega, \models, \Vdash \rangle$

- \mathcal{L} Formulas
- Ω Interpretations
- $\models \subseteq \Omega \times \mathcal{L}$ Model-Relation
- $\Vdash \subseteq \mathcal{L} \times \mathcal{L}$ Entailment

Relational Model for \mathcal{L}

Relational Model $\langle \mathcal{S}, \ell, R \rangle$

- \mathcal{S} set of states
- $\ell : \mathcal{S} \rightarrow \Omega$
- $R \subseteq \mathcal{S} \times \mathcal{S}$ binary relation on \mathcal{S}

‘ Notions:

- $\mathcal{S}(\alpha) = \{s \in \mathcal{S} \mid \ell(s) \models \alpha\}$
- $\min(\mathcal{S}(\alpha), R) = \{s \in \mathcal{S}(\alpha) \mid \nexists s' \in \mathcal{S}(\alpha) : s' R s\}$

Preferential Model for \mathcal{L}

Preferential Model $\mathbb{W} = \langle \mathcal{S}, \ell, \prec \rangle$

- $\langle \mathcal{S}, \ell, \prec \rangle$ is relational model
- \prec strict partial order on \mathcal{S}
- Smoothness: for all α and $s \in \mathcal{S}(\alpha)$
 - ▶ $s \in \min(\mathcal{S}(\alpha), \prec)$ or
 - ▶ there exist $t \prec s$ with $t \in \min(\mathcal{S}(\alpha), \prec)$

Remarks:

- $\mathcal{S}(\alpha) \neq \emptyset$ implies $\min(\mathcal{S}(\alpha), \prec) \neq \emptyset$
- well-foundedness is not enough

Notation:

$$\min(\text{Mod}(\alpha), \prec) = \{\ell(s) \mid s \in \min(\mathcal{S}(\alpha), \prec)\}$$

Preferential Entailment

Entailment $\vdash_{\mathbb{W}}$ defined by preferential Model $\mathbb{W} = \langle \mathcal{S}, \ell, \prec \rangle$:

$\alpha \vdash_{\mathbb{W}} \beta$ if $\min(\mathcal{S}(\alpha), \prec) \subseteq \mathcal{S}(\beta)$

(equivalently: $\min(\text{Mod}(\alpha), \prec) \subseteq \text{Mod}(\beta)$)

Every \mathbb{W} for \mathcal{L} defines a
preferential logic $\langle \mathcal{L}, \Omega, \models, \vdash_{\mathbb{W}} \rangle$

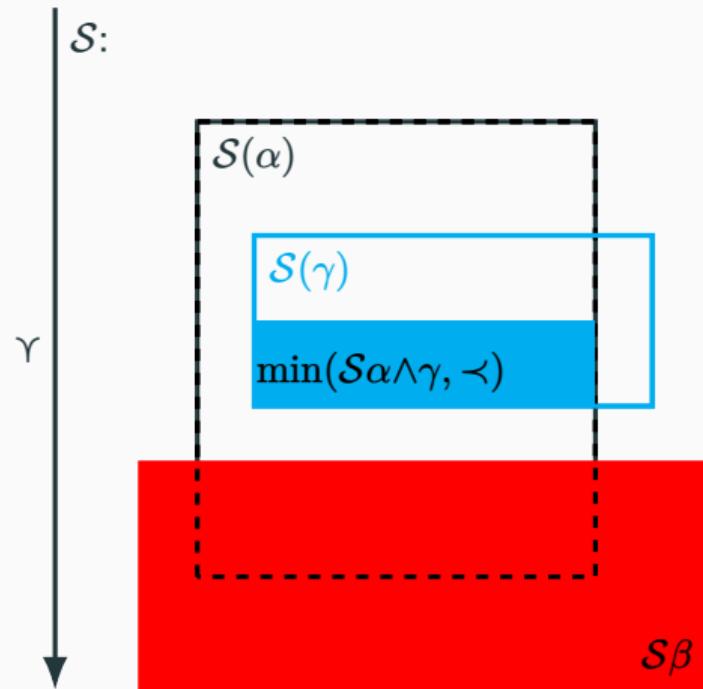
Families of Preferential Logics

- PDL^{pref} Preferential propositional dependence logic
- CPL^{pref} preferential entailment of propositional logic with classical semantics
- TPL^{pref} preferential entailment of propositional logic with team-based semantics

Illustration

Preferential Model: $\mathbb{W} = \langle \mathcal{S}, \ell, \prec \rangle$

Inference: $\alpha \succsim_{\mathbb{W}} \beta$ if $\min(\mathcal{S}(\alpha), \prec) \subseteq \mathcal{S}(\beta)$



We have the following:

- $\alpha \succsim_{\mathbb{W}} \beta$
Because of:

$$\min(\mathcal{S}(\alpha), \prec) \subseteq \mathcal{S}(\beta)$$

- $\alpha \wedge \gamma \not\succsim_{\mathbb{W}} \beta$
Because of:

$$\min(\mathcal{S}(\alpha \wedge \gamma), \prec) \not\subseteq \mathcal{S}(\beta)$$

- This is called **non-monotonicity**

Obligatory Bird Example

$$X_F = \begin{array}{c|ccc} & b & p & f \\ \hline v_1 & 1 & 0 & 1 \end{array}$$

$$X_P = \begin{array}{c|ccc} & b & p & f \\ \hline v_2 & 1 & 1 & 0 \end{array}$$

Let $\mathbb{W} = \langle \mathcal{S}_{\text{peng}}, \ell_{\text{peng}}, \prec_{\text{peng}} \rangle$ be the preferential model such that

$$\mathcal{S}_{\text{peng}} = \{s_F, s_P\} \quad \ell_{\text{peng}}(s_i) = X_i \quad s_F \prec_{\text{peng}} s_P$$

We obtain the following inferences:

$$b \succsim_{\mathbb{W}} f \quad \min(\text{Mod}(b), \prec_{\text{peng}}) = \{X_F\} \subseteq \text{Mod}(f) \quad (\text{,,birds usually fly"})$$

$$p \succsim_{\mathbb{W}} \neg f \quad \min(\text{Mod}(p), \prec_{\text{peng}}) = \{X_P\} \subseteq \text{Mod}(\neg f) \quad (\text{,,penguins usually do not fly"})$$

$$b \wedge p \not\succsim_{\mathbb{W}} f \quad \min(\text{Mod}(b \wedge p), \prec_{\text{peng}}) = \{X_P\} \not\subseteq \text{Mod}(f) \quad (\text{,,penguin birds usually do not fly"})$$

Intuition for Preferential Reasoning

CPL^{pref}

Typical reading:

$\alpha \succsim_{\text{W}} \beta$ if α , then usually β

PDL^{pref} and TPL^{pref}

Intuition (databases):

$\alpha \succsim_{\text{W}} \beta$ if in database that complies with α , usually β holds

Intuition (sensors):

$\alpha \succsim \beta$ if β is supported by the most reliable sensors that support α

Preferential Entailment: Extreme Cases

Inference mechanism over model $\mathbb{W} = \langle \mathcal{S}, \ell, \prec \rangle$ (for logic $\mathcal{L} = \langle \mathcal{L}, \Omega, \models, \Vdash \rangle$):

$$\alpha \Vdash_{\mathbb{W}} \beta \text{ if } \min(\text{Mod}(\alpha), \prec) \subseteq \text{Mod}(\beta)$$

All interpretations

Preferential Model $\mathbb{W}_{\text{Full}} = \langle \mathcal{S}_{\text{Full}}, \ell_{\text{Full}}, \prec_{\text{Full}} \rangle$

- $\mathcal{S}_{\text{Full}} = \Omega$
- $\ell_{\text{Full}} : \mathcal{S}_{\text{Full}} \rightarrow \Omega$, $\ell_{\text{Full}} = \text{id}$
- $\prec_{\text{Full}} = \emptyset$ (empty SPO)

Preferential Entailment $\Vdash_{\mathbb{W}_{\text{Full}}}$:

$$\begin{aligned}\Vdash_{\mathbb{W}_{\text{Full}}} &= \Vdash \\ \min(\text{Mod}(\alpha), \prec_{\text{Full}}) &= \text{Mod}(\alpha)\end{aligned}$$

Empty Set of States

Preferential Model $\mathbb{W}_{\emptyset} = \langle \mathcal{S}_{\emptyset}, \ell_{\emptyset}, \prec_{\emptyset} \rangle$

- $\mathcal{S}_{\emptyset} = \emptyset$
- $\ell_{\emptyset} = \emptyset$
- $\prec_{\emptyset} = \emptyset$ (empty SPO)

Preferential Entailment $\Vdash_{\mathbb{W}_{\emptyset}}$:

$$\begin{aligned}\Vdash_{\mathbb{W}_{\emptyset}} &= \mathcal{L} \times \mathcal{L} \\ \min(\text{Mod}(\alpha), \prec_{\emptyset}) &= \emptyset\end{aligned}$$

Possible World Interpretation

Example (uncertain microbiologist):

$g \simeq$ has a certain gene

$b \simeq$ shines blue

$a \simeq$ eats amoebae

$$K = \{ b, = (g, b), g \vee a \}$$

$= (g, b) \simeq$ blue shining is determined
by having the gene

$g \vee a \simeq$, $\neg g$ implies a'

Teams that satisfy K :

$$X_1 = \begin{array}{c|ccc} & g & b & a \\ \hline v_1 & 1 & 1 & 1 \\ v_2 & 1 & 1 & 0 \end{array} \quad X_2 = \begin{array}{c|ccc} & g & b & a \\ \hline v_3 & 0 & 1 & 1 \end{array}$$

Preferences for X_1 and X_2 :

- X_1 more plausible than X_2

Preferential model $\mathbb{W} = \langle \mathcal{S}, \ell, \prec \rangle$:

$$\mathcal{S} = \{s_1, s_2\} \quad \ell(s_1) = X_1$$

$$s_1 \prec s_2 \quad \ell(s_2) = X_2$$

We have:

$$K \not\models a \quad K \not\models_{\mathbb{W}} a \quad K \cup \{\neg g\} \models_{\mathbb{W}} a$$

$$K \not\models = (a) \quad K \not\models_{\mathbb{W}} = (a) \quad K \cup \{\neg g\} \models_{\mathbb{W}} = (a)$$

$$K \not\models g \quad K \models_{\mathbb{W}} g \quad K \cup \{a\} \not\models_{\mathbb{W}} g$$

$$K \models = (g) \quad K \models_{\mathbb{W}} = (g) \quad K \cup \{a\} \models_{\mathbb{W}} = (g)$$

Introduction and Motivation

1.

Logic Background

2.

Preferential Logics

Axiomatics

3.

Complexity

4.

Conclusion

$$\frac{}{\alpha \succsim \alpha}$$

(Ref)

$$\frac{\alpha \models^{\text{CPL}} \beta \quad \gamma \succsim \alpha}{\gamma \succsim \beta}$$

(RW)

$$\frac{\alpha \equiv^{\text{CPL}} \beta \quad \alpha \succsim \gamma}{\beta \succsim \gamma}$$

(LLE)

$$\frac{\alpha \succsim \beta \quad \alpha \succsim \gamma}{\alpha \wedge \beta \succsim \gamma}$$

(CM)

$$\frac{\alpha \wedge \beta \succsim \gamma \quad \alpha \succsim \beta}{\alpha \succsim \gamma}$$

(Cut)

$$\frac{\alpha \succsim \gamma \quad \beta \succsim \gamma}{\alpha \vee \beta \succsim \gamma}$$

(Or)

System C = (Ref) + (RW) + (LLE) + (CM) + (Cut)

System P = System C + (Or)

Proposition (Kraus, Lehmann und Magidor, 1990)

The following statements are equivalent for CPL:

- \succsim satisfies **System P**
- \succsim is preferential

(there is a preferential model \mathbb{W} with $\succsim = \succsim_{\mathbb{W}}$)

Axiomatic Characterization For Free?

$$\frac{}{\alpha \sim \alpha}$$

(Ref)

$$\frac{\alpha \models \beta \quad \gamma \sim \alpha}{\gamma \sim \beta}$$

(RW)

$$\frac{\alpha \equiv \beta \quad \alpha \sim \gamma}{\beta \sim \gamma}$$

(LLE)

$$\frac{\alpha \sim \beta \quad \alpha \sim \gamma}{\alpha \wedge \beta \sim \gamma}$$

(CM)

$$\frac{\alpha \wedge \beta \sim \gamma \quad \alpha \sim \beta}{\alpha \sim \gamma}$$

(Cut)

$$\frac{\alpha \sim \gamma \quad \beta \sim \gamma}{\alpha \vee \beta \sim \gamma}$$

(Or)

System C = (Ref) + (RW) + (LLE) + (CM) + (Cut)

System P = System C + (Or)

Theorem

For PDL, the following is equivalent:

- \sim satisfies **System P**
- \sim is preferential

statement does not hold!

Proposition

For PDL, every preferential entailment relation \succsim_W satisfies System C.

Proposition

There is a preferential entailment relation \succsim_W for PDL that violates (Or).

So... PDL^{pref}

- satisfies System C, but
- violates **System P**.

Violation of (Or) by PDL: Preferences are not required

$$\frac{\alpha \succsim \gamma \quad \beta \succsim \gamma}{\alpha \vee \beta \succsim \gamma} \quad (\text{Or})$$

Setting:

$$\alpha = \beta = \gamma = \neg(p) \quad \text{so, we have:} \quad \alpha \models \gamma \quad \beta \models \gamma$$

Consider the team X over $\{p, q\}$ defined by:

	p	q
v_1	1	0
v_2	0	1

We obtain

$$X \not\models \alpha \quad X \not\models \beta \quad X \not\models \gamma \quad X \models \alpha \vee \beta$$

Consequently, $\alpha \vee \beta \not\models \gamma$

Theorem

Let $\mathbb{W} = \langle \mathcal{S}, \ell, \prec \rangle$ be a preferential model for PDL.

The following statements are equivalent:

(i) $\vdash_{\mathbb{W}}$ satisfies **System P**.

(ii) The (\star) -property holds:

$$\min(\text{Mod}(\alpha \vee \beta), \prec) \subseteq \min(\text{Mod}(\alpha), \prec) \cup \min(\text{Mod}(\beta), \prec) \quad (\star)$$

(iii) The \triangle -property holds:

$$\text{for all } s \in \mathcal{S} \text{ with } |\ell(s)| > 1 \text{ exists } s' \in \mathcal{S} \text{ with } \ell(s') \subsetneq \ell(s) \text{ and } s' \prec s \quad (\triangle)$$

(ii) The (\star) -property holds:

$$\min(\text{Mod}(\alpha \vee \beta), \prec) \subseteq \min(\text{Mod}(\alpha), \prec) \cup \min(\text{Mod}(\beta), \prec) \quad (\star)$$

(iii) The \triangle -property holds:

$$\text{for all } s \in \mathcal{S} \text{ with } |\ell(s)| > 1 \text{ exists } s' \in \mathcal{S} \text{ with } \ell(s') \subsetneq \ell(s) \text{ and } s' \prec s \quad (\triangle)$$

(ii) \Rightarrow (iii):

- Show (\square) : for each $|X| > 1$ there is Y with:

$$Y \subsetneq X, \quad Y \neq \emptyset, \quad Y \prec X$$

- For $|X| \geq 1$ there is a formulas Θ_X :

$$Y \models \Theta_X \text{ iff } Y \subseteq X$$

- $\Theta_X = \bigvee_{v \in X} (p_1^v \wedge \cdots \wedge p_n^v)$

- For $|X| > 1$ there are non-empty $Y, Z \subsetneq X$:
 $X \not\models \Theta_Y$ and $X \not\models \Theta_Z$

- $\alpha = \Theta_Y$ and $\beta = \Theta_Z$ in (\star) :

$$\min(S(\alpha \vee \beta), \prec) \subseteq \min(S(\alpha), \prec) \cup \min(S(\beta), \prec)$$

- Hence, $X \notin \min(\text{Mod}(\alpha \vee \beta), \prec)$
- Iteration of (\square) yields (\triangle)

(iii) \Rightarrow (ii):

- $\min(\text{Mod}(\alpha), \prec)$ are only singleton teams
- (\star) inherited from classical logic

Preferential PDL: The price of satisfying **System P**

Flattening of ϕ :

formula $\phi^f := \phi[= (...) / \top]$; i.e., replacing all dependence atoms by \top .

Example:

$$\phi = a \vee = (a, b) \qquad \qquad \phi^f = a \vee \top$$

Theorem

Let $\mathbb{W} = \langle \mathcal{S}, \ell, \prec \rangle$ be a preferential model over PDL that satisfies **System P**.

For all α, β holds:

$$\alpha \succ_{\mathbb{W}} \beta \quad \text{if and only if} \quad \alpha^f \succ_{\mathbb{W}'} \beta^f$$

where

- $\mathbb{W}' = \langle \mathcal{S}', \ell', \prec' \rangle$ denotes a preferential model for CPL
- obtained from \mathbb{W} by consider only singleton teams.

Subset-Order

Preferential Model $\mathbb{W}_{\text{sub}} = \langle \mathcal{S}_{\text{sub}}, \ell_{\text{sub}}, \prec_{\text{sub}} \rangle$

- $\mathcal{S}_{\text{sub}} = \Omega \setminus \{\emptyset\}$
- $\ell_{\text{sub}} : \mathcal{S}_{\text{sub}} \rightarrow \mathcal{S}_{\text{sub}}, \ell_{\text{sub}} = \text{id}$
- $\prec_{\text{sub}} = \subset$

Preferential Entailment $\vdash_{\mathbb{W}_{\text{sub}}}$:

$$\alpha \vdash_{\mathbb{W}_{\text{sub}}} \beta \text{ iff } \alpha^f \models^c \beta^f$$

(Theorem from last slide)

Supset-Order

Preferential Model $\mathbb{W}_{\text{sup}} = \langle \mathcal{S}_{\text{sup}}, \ell_{\text{sup}}, \prec_{\text{sup}} \rangle$

- $\mathcal{S}_{\text{sup}} = \Omega \setminus \{\emptyset\}$
- $\ell_{\text{sup}} : \mathcal{S}_{\text{sup}} \rightarrow \mathcal{S}_{\text{sup}}, \ell_{\text{sup}} = \text{id}$
- $\prec_{\text{sup}} = \supseteq$

Preferential Entailment $\vdash_{\mathbb{W}_{\text{sup}}}$:

$$\vdash_{\mathbb{W}_{\text{sup}}} = \models$$

(due to downward-closure)

Introduction and Motivation

1.

Logic Background

2.

Preferential Logics

Axiomatics
(TPL^{pref} surprises)

3.

Complexity

4.

Conclusion

Proposition

The following statements hold:

- (a) PDL satisfies **System C**, but violates **System P**.
- (b) TPL satisfies **System P**.

Proposition

Let \mathbb{W} be a preferential model for TPL.

If $()$ is satisfied for all formulas A, B , then $\vdash_{\mathbb{W}}$ satisfies **System P**, whereby:*

$$\min(\text{Mod}(A \vee B), \prec) \subseteq \min(\text{Mod}(A), \prec) \cup \min(\text{Mod}(B), \prec) \quad (*)$$

But, the converse is not always true.

Proposition

The entailment relation $\vdash_{\mathbb{W}_{pq}}$ for TPL violates (Or).

We consider the teams $X_{pq} = \{v_1\}$, $X_{\bar{p}q} = \{v_2\}$, and $X_{p\leftrightarrow q} = \{v_1, v_3\}$:

$$X_{pq} = \begin{array}{c|cc} & p & q \\ \hline v_1 & 1 & 1 \end{array} \quad X_{\bar{p}q} = \begin{array}{c|cc} & p & q \\ \hline v_2 & 0 & 1 \end{array} \quad X_{p\leftrightarrow q} = \begin{array}{c|cc} & p & q \\ \hline v_1 & 1 & 1 \\ v_3 & 0 & 0 \end{array}$$

Let $\mathbb{W}_{pq} = \langle \mathcal{S}_{pq}, \ell_{pq}, \prec_{pq} \rangle$ be the preferential model such that

$$\mathcal{S}_{pq} = \{s_{pq}, s_{\bar{p}q}, s_{p\leftrightarrow q}\} \quad \ell_{pq}(s_X) = X \quad X_{p\leftrightarrow q} \prec_{pq} X_{pq} \quad X_{p\leftrightarrow q} \prec_{pq} X_{\bar{p}q}$$

We obtain the following preferential entailments:

$$p \vdash_{\mathbb{W}_{pq}} q$$

$$\neg p \vdash_{\mathbb{W}_{pq}} q$$

$$p \vee \neg p \not\vdash_{\mathbb{W}_{pq}} q$$

$$\left[\frac{\alpha \vdash \gamma \quad \beta \vdash \gamma}{\alpha \vee \beta \vdash \gamma} \text{ (Or)} \right]$$

TPL^{pref} : Apparent Paradoxical Situation

- CPL^{pref} satisfies **System P**
- TPL^{pref} violates **System P**

Proposition

If $\alpha, \beta \in PL$ are classical propositional formulas (in NNF):

$$\alpha \models^{TPL} \beta \text{ if and only if } \alpha \models^{CPL} \beta$$

On one side with have flatness:

$$[\text{Flatness}] \quad X \models \alpha \iff \text{for all } v \in X, \{v\} \models \alpha.$$

On the other side, preferential models over teams are more expressive.

Furthermore:

- TPL is a fragment of PDL
- TPL^{pref} and PDL^{pref} are different

Introduction and Motivation

1.

Logic Background

2.

Preferential Logics

Axiomatics

3.

Complexity

4.

Conclusion

System P

$$\frac{}{\alpha \succsim \alpha}$$

(Ref)

$$\frac{\alpha \models^c \beta \quad \gamma \succsim \alpha}{\gamma \succsim \beta}$$

(RW)

$$\frac{\alpha \equiv^c \beta \quad \alpha \succsim \gamma}{\beta \succsim \gamma}$$

(LLE)

$$\frac{\alpha \succsim \beta \quad \alpha \succsim \gamma}{\alpha \wedge \beta \succsim \gamma}$$

(CM)

$$\frac{\alpha \wedge \beta \succsim \gamma \quad \alpha \succsim \beta}{\alpha \succsim \gamma}$$

(Cut)

$$\frac{\alpha \succsim \gamma \quad \beta \succsim \gamma}{\alpha \vee \beta \succsim \gamma}$$

(Or)

Conditional (assertion): $\alpha \succsim \beta$ Conditional Knowledge base: set of conditionals $\mathbf{K} = \{\alpha_1 \succsim \beta_1, \alpha_2 \succsim \beta_2 \dots\}$ Entailment: $\mathbf{K} \models^P \alpha \succsim \beta$ if there is a **System P** proof for $\alpha \succsim \beta$ when assuming \mathbf{K} **Proposition (Lehmann und Magidor, 1992)***The following statements are equivalent:*

- $\mathbf{K} \models^P \alpha \succsim \beta$
- $\alpha \succsim \beta$ holds in all preferential models that satisfy \mathbf{K}

 $(\mathbf{K} \subseteq \succsim_W \text{ implies } \alpha \succsim_W \beta)$

Proposition (Lehmann und Magidor, 1992)

The following problem is coNP-complete:

ENTAILMENT

Given: Finite conditional knowledge base \mathbf{K} and a conditional $\alpha \succsim \beta$

Question: Does $\mathbf{K} \models^P \alpha \succsim \beta$ hold?

$$\mathbf{K}^{\text{SysP}} = \{\alpha \succsim \beta \mid \mathbf{K} \models^P \alpha \succsim \beta\}$$

- closure operator
- \mathbf{K}^{SysP} satisfies **System P**

Proposition

The following statements are equivalent:

- \succsim satisfies **System P**
- \succsim is preferential
- there is some \mathbf{K} with $\succsim = \mathbf{K}^{\text{SysP}}$

(preferential model \mathbb{W} with $\succsim = \succsim_{\mathbb{W}}$)

PDL^{pref}: Complexity of Preferential Entailment (w.r.t. \mathbb{W})

Representational Issues for \mathbb{W} :

- Preferential models can be huge; $\Omega(2^{2^n})$, where n is the number of atoms
- Complexity results for the general case and succinct representations¹

ENT(PDL^{pref})

Input: Formulas α, β ,
preferential model \mathbb{W}
Question: $\alpha \vdash_{\mathbb{W}} \beta$?

Theorem

ENT(PDL^{pref}) is in Θ_2^p and NP-hard.

SUCCENT(PDL^{pref})

Input: Formulas α, β ,
succinctly given preferential model \mathbb{W}
Question: $\alpha \vdash_{\mathbb{W}} \beta$?

Theorem

SUCCENT(PDL^{pref}) is in Π_2^p and Δ_2^p -hard.

Remark:

- $\Theta_2^p = \text{P}^{\text{NP}} = \text{PTIME}$ with polynomial many parallel NP-oracle queries
- $\Pi_2^p = \text{coNP}^{\text{NP}} = \text{coNP}$ with NP-oracle queries
- $\Delta_2^p = \text{P}$ with NP-oracle queries

¹By two $(2^n)^{O(1)}$ -sized circuits $(\mathcal{L}, \mathcal{O})$

$\text{ENT}(\text{PDL}^{\text{pref}})$ is in Θ_2^p and NP-hard.

$\text{ENT}(\text{PDL}^{\text{pref}})$

Input: Formulas α, β , preferential model $\mathbb{W} = \langle \mathcal{S}, \ell, \prec \rangle$

Question: $\alpha \sim_{\mathbb{W}} \beta$?

[Membership.]

- The model checking problem for PDL is NP-complete [Ebbing et all, 2012]
- Θ_2^p algorithm:
 1. In parallel, ask the NP-oracle for each team $T \in \mathcal{S}$ whether $T \models \alpha$ and $T \models \beta$.
 2. For every minimal element in the order induced graph (\mathcal{S}, \prec) , if the oracle answers were of the form $(1, 0)$ (that is, α was satisfied but β not) then reject.
 3. Accept.

[Hardness.]

- The model checking problem for PDL is NP-complete [Ebbing et all, 2012].
- Reduce model checking for PDL into $\text{ENT}(\text{PDL}^{\text{pref}})$:

$$(T, \alpha) \mapsto ((\{T\}, \text{id}_{\mathcal{S}}, \emptyset), \top, \alpha).$$

SUCCENT(PDL^{pref}) is in Π_2^p and Δ_2^p -hard.

SUCCENT(PDL^{pref})

Input: Formulas α, β , succinctly given preferential model $\mathbb{W} = \langle \mathcal{S}, \ell, \prec \rangle$

Question: $\alpha \succsim_{\mathbb{W}} \beta$?

Definition (Succinct representation $(\mathcal{L}, \mathcal{O})$)

Setting:

- N set of propositions with $|N| = n$,
- $\mathcal{S} = \{0, 1\}^m$ be a set for $m \in (2^n)^{O(1)}$,
- $\prec \subseteq \mathcal{S} \times \mathcal{S}$ be a strict partial order.

For a preferential model $\mathbb{W} = \langle \mathcal{S}, \ell, \prec \rangle$ define two $(2^n)^{O(1)}$ -sized circuit families \mathcal{L}, \mathcal{O} (labelling, ordering) such that the following is true:

1. ℓ is computed by \mathcal{L} ,
2. $\mathcal{O}: \mathcal{S} \times \mathcal{S} \rightarrow \{0, 1\}$ is a partial function such that for $s, s' \in \mathcal{S}$, the circuit outputs 1 if and only if $s \prec s'$ is true.

[Membership.] Π_2^p algorithm:

1. Universally nondeterministically branch on all elements $s \in \mathcal{S}$ specified by inputs to \mathcal{O} , and all assignments $j: \{x_1, \dots, x_n\} \rightarrow \{0, 1\}$.
2. Existentially nondeterministically branch on all $s' \in \mathcal{S}$
3. If $j \neq \mathcal{L}(s)$ then accept.
4. If $j \not\models \alpha$ or $j \models \beta$ then accept.
5. If $\mathcal{L}(s') \models \alpha$ and $\mathcal{O}(s', s)$ then accept.
6. Reject.

[Hardness.] Reduction from ODDLEXMAXSAT which is Δ_2^p -complete [Krentel, 1988]

Complexity Results: Summary

Problem	Tract.	Complexity
$\text{ENT}(\text{CPL}^{\text{pref}})$	✓	$\in P, \text{NC}^1$ -hard
$\text{SUCCENT}(\text{CPL}^{\text{pref}})_{>_{\text{lex}}}$	✗	Δ_2^p -complete
$\text{SUCCENT}(\text{CPL}^{\text{pref}})$	✗	$\in \Pi_2^p, \Delta_2^p$ -hard
$\text{ENT}(\text{PDL}^{\text{pref}})$	✗	$\in \Theta_2^p, \text{NP}$ -hard
$\text{SUCCENT}(\text{PDL}^{\text{pref}})$	✗	$\in \Pi_2^p, \Delta_2^p$ -hard
$\text{ENT}(\text{TPL}^{\text{pref}})$	✓	$\in P, \text{NC}^1$ -hard
$\text{SUCCENT}(\text{TPL}^{\text{pref}})$	✗	$\in \Pi_2^p, \Delta_2^p$ -hard

Remarks:

- Complexity of ENT and SUCCENT for CPL^{pref} was **not** known before
- Tight results are surprisingly hard to proof

Introduction and Motivation

1.

Logic Background

2.

Preferential Logics

Axiomatics

3.

Complexity

4.

Conclusion

Summary

Content

- Motivation
 - ▶ Sensor data, epistemic indistinguishability, ...
- Team-Semantics (PDL, TPL)
- Preferential Logics (PDL^{pref}, TPL^{pref}, CPL^{pref})
- Axiomatics of PDL^{pref} (and TPL^{pref})
 - ▶ Cumulative (**System C**)
 - ▶ Violation of **System P**
 - ▶ **System P** Characterization
 - ▶ TPL^{pref} is not fragment of PDL^{pref}
- Complexity
 - ▶ ENT and SUCCENT
 - ▶ (In-)Tractability

Problem	Tract.	Complexity
ENT(CPL ^{pref})	✓	$\in P$, NC ¹ -hard
SUCCENT(CPL ^{pref}) _{>lex}	✗	Δ_2^p -complete
SUCCENT(CPL ^{pref})	✗	$\in \Pi_2^p$, Δ_2^p -hard
ENT(PDL ^{pref})	✗	$\in \Theta_2^p$, NP-hard
SUCCENT(PDL ^{pref})	✗	$\in \Pi_2^p$, Δ_2^p -hard
ENT(TPL ^{pref})	✓	$\in P$, NC ¹ -hard
SUCCENT(TPL ^{pref})	✗	$\in \Pi_2^p$, Δ_2^p -hard

Future work

- Complexity results (tight)
- More on axiomatizations
- Other team-based logics
- Conditionals

Thanks for your attention!