
Kai Sauerwald
FernUniversität in Hagen, Germany

New Results on Preferential Reasoning
Helsinki Logic Seminar, 21.01.2026

Joint work with Arne Meier and Juha Kontinen



Introduction and Motivation

1.
Logic Background

2.
Preferential Logics

3.
Axiomatics

4.
Complexity

Conclusion



Introduction and Motivation

1.
Logic Background

2.
Preferential Logics

3.
Axiomatics

4.
Complexity

Conclusion



combine

Preferential Reasoning
(injection of extra-logical information into reasoning)

and

Team-based Reasoning
(reasoning in presence of plurality of objects)



Motivation I: Reasoning over different data sources

Living in a world of many sensors:

• Provide large amounts of data
• Different reliability

One scenario:

• Set of sensors S = {s1, s2, . . .}
• Each sensor s has a database ℓ(s)
• ≺ ordering over the sensors; meaning:

s1 ≺ s2 if s1 is strictly more reliable then s2

Research question:

• Sensor s supports α, if α holds in ℓ(s)
• Investigate the following kind of reasoning

α |∼β if β is supported by the most reliable sensors s1 whose data support α

Essentially: combination of preferential reasoning with team-based reasoning
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Motivation II: Epistemic Indistinguishability

Agents might not be able to distinguish all possible worlds

• Considered in Kripke semantics of Epistemic Modal Logic
• States are possible worlds
• Reachability relation = indistinguishability relation

Combination of with preferential reasoning in classical setting difficult

• Classical languages cannot to not have the means
• Combining preferences with Kripke-structures is cumbersome/unclear

Potential approach: combination of preferential reasoning with team-based reasoning

E.g, permits investigation of the following kind of reasoning:

α |∼β if it is plausible that when the agent beliefs α, then also β
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Motivation III: Theoretical Advancement

Preferential Reasoning has many been study with classical logics in mind

Closure under Boolean operations is not always given

• Learned system
• Also classical systems are not always Boolean, e.g., context-free languages

Team-based logics

• Connective are not classical
• Well studied and understood
• Intuition and perspectives known

Promising testbed for study preferential reasoning: combination with team-based reasoning
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Logics considered

CPL – Propositional Logic with Classical Semantics
Syntax: ϕ ::= Σ | ¬ϕ | ⊤ | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ
Semantics: via valuation functions

PDL – Propositional Dependence Logic
Syntax: ϕ ::= Σ | ¬Σ | ⊤ | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ | =

(
Σ⃗,Σ

)
Semantics: via teams (sets of valuation functions)

TPL – Propositional Logic with Team-semantics
Syntax: ϕ ::= Σ | ¬Σ | ⊤ | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ
Semantics: via teams (sets of valuation functions)

+ their preferential versions CPLpref, PDLpref, and TPLpref
(next section)
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Propositional Dependence Logic: Syntax

Language of propositional dependence logic PDL over Σ = {p1, . . . , pn}:

ϕ ::= Σ | ¬Σ | ⊤ | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ | =
(
Σ⃗,Σ

)
Notable aspects:

Negation only in literals
• ¬p ∨ ¬q (valid formula)
• ¬(p ∧ q) (invalid formula)
• Not closed under negation!

Dependence atoms
• = (a1, . . . , am, b)
• value of b depends on a1, . . . , am

Example formulas:

• ¬g ∨ a (g „implies“ a)
• =(a, b) ∧ a (a holds and b depends on a)
• =(c) (c has always the same value)
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Propositional Dependence Logic: Semantics
Classical Interpretations (propositional logic):

Ωc = { v | v : Σ → {0, 1} }

Team Semantics
Interpretations:

Ω = P(Ωc) = { X | X ⊆ Ωc }
For X ∈ Ω:

X |= p iff for all v ∈ X, v |=c p;
X |= ¬p iff for all v ∈ X, v ̸|=c p;
X |= ⊥ iff X = ∅;
X |= ⊤ is always the case;
X |= α ∧ β iff X |= α and X |= β;
X |= α ∨ β iff there exist Y, Z ⊆ X such that

X = Y ∪ Z, Y |= α and Z |= β;
X |= =(⃗a, b) iff for all v, v′ ∈ X,

v(⃗a) = v′(⃗a) implies v(b) = v′(b).
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Illustration for =(⃗a, b)
Semantics of =(⃗a, b)

X |= =(⃗a, b) iff for all v, v′ ∈ X,
v(⃗a) = v′(⃗a) implies v(b) = v′(b).

Example

X1 =

a b c
v1 1 1 0
v2 1 0 1
v3 0 1 1

X2 =
a b c

v1 1 0 0
v2 1 0 1

Evaluation works as follows:

X1 ̸|= =(a, b)

X2 |= =(a, b)

X1 ̸|= =(b)

X1 |= =(b) ∨=(b)

Y = {v1, v3} Z = {v2}
X1 = Y ∪ Z

Y |= =(b) Z |= =(b) 9 / 37



Motivation for Dependence Logic I

Relational Databases
Interpret teams as database tables:

X =

a b c
v1 0 1 0
v2 1 1 0
v3 0 1 1

Formulas ≃ integrity constraints.
X |= ϕ amounts to checking whether ϕ holds
for X.
Example:
X |= =(id, col1) ∧ . . . ∧=(id, coln) is a key
constraint.

Inquisitive logic (The Logic of Questionsa)
Define a question operator ?p by:

X |=?p iff X |= p or X |= ¬p

Interpret teams as answers for a question.
Answers for ?p:

but not for (?p) ∧=(p, q)
aCiardelli: Inquisitive Logic. Springer, 2022
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Entailment for Dependence Logic
Model sets:

Mod(α) = {X | X |= α} Mod(K) = {X | for all α ∈ K : X |= α}

Entailment |=PDL and equivalence ≡PDL are defined as usual:
α |=PDL β if Mod(α) ⊆ Mod(β) K |=PDL β if Mod(K) ⊆ Mod(β)
α ≡PDL β if Mod(α) = Mod(β)

Intuition (databases):
α |=PDL β if every database that complies with α also complies with β

Intuition (sensors):
α |=PDL β if every sensor that supports α also supports β

Proposition
If α, β ∈ PL are classical propositional formulas (in NNF):

α |=TPL β if and only if α |=PDL β if and only if α |=CPL β
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Motivation for Dependence Logic II

Possible World Interpretation – More expressible agents/knowledge bases?
Example (uncertain microbiologist):
g ≃ has a certain gene
b ≃ shines blue
a ≃ eats amoebae

K = { b, =(g, b) , ¬g ∨ a }

=(g, b) ≃ blue shining is determined
by having the gene

¬g ∨ a ≃ ‚g implies a‘

Teams that satisfy K:

X1 =
g b a

v1 1 1 1
v2 1 1 0

X2 = g b a
v3 0 1 1

Proposal for interpretation:
• Teams as model sets of K
• Two layers:

▶ worlds (=assignments)
▶ joint observable worlds (=teams)

We have:

K ̸|= a

K ̸|= =(a)

K ̸|= g

K |= =(g)
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Preferential Logics: Models

(Model-Theoretic) Logic L = ⟨L,Ω, |=,⊩⟩
• L Formulas
• Ω Interpretations
• |= ⊆ Ω× L Model-Relation
• ⊩ ⊆ L× L Entailment

Relational Model for L

Relational Model ⟨S, ℓ, R⟩
• S set of states
• ℓ : S → Ω
• R ⊆ S × S binary relation on S

‘ Notions:
• S(α) = {s ∈ S | ℓ(s) |= α}
• min(S(α), R)={s ∈ S(α) |̸ ∃s′ ∈ S(α) : s′Rs}

Preferential Model for L

Preferential Model W = ⟨S, ℓ,≺⟩
• ⟨S, ℓ,≺⟩ is relational model
• ≺ strict partial order on S
• Smoothness: for all α and s ∈ S(α)

▶ s ∈ min(S(α),≺) or
▶ there exist t ≺ s with t ∈ min(S(α),≺)

Remarks:
• S(α) ̸= ∅ implies min(S(α),≺) ̸= ∅
• well-foundedness is not enough

Notation:

min(Mod(α),≺) = {ℓ(s) | s ∈ min(S(α),≺)}
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Preferential Logics: Entailment

Preferential Entailment

Entailment |∼W defined by preferential Model W = ⟨S, ℓ,≺⟩ :

α |∼Wβ if min(S(α),≺) ⊆ S(β) (equivalently: min(Mod(α),≺) ⊆ Mod(β))

Every W for L defines a
preferential logic ⟨L,Ω, |=, |∼W⟩

Families of Preferential Logics

• PDLpref Preferential propositional dependence logic
• CPLpref preferential entailment of propositional logic with classical semantics
• TPLpref preferential entailment of propositional logic with team-based semantics

14 / 37



Illustration

Preferential Model: W = ⟨S, ℓ,≺⟩ Inference: α |∼Wβ if min(S(α),≺) ⊆ S(β)

S:

S(α)

S(β)

S(γ)

S(β)

min(S(α),≺)

Sβ

min(Sα∧γ,≺)≺

We have the following:
• α |∼Wβ

Because of:

min(S(α),≺) ⊆ S(β)

• α ∧ γ |̸∼Wβ
Because of:

min(S(α ∧ γ),≺) ̸⊆ S(β)

• This is called non-monotonicity
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Obligatory Bird Example

XF = b p f
v1 1 0 1 XP = b p f

v2 1 1 0

Let W = ⟨Speng, ℓpeng,≺peng⟩ be the preferential model such that

Speng = {sF , sP } ℓpeng(si) = Xi sF ≺peng sP

We obtain the following inferences:

b |∼Wf min(Mod(b),≺peng) = {XF } ⊆ Mod(f) („birds usually fly“)
p |∼W¬f min(Mod(p),≺peng) = {XP } ⊆ Mod(¬f) („penguins usually do not fly“)

b ∧ p |̸∼Wf min(Mod(b ∧ p),≺peng) = {XP } ̸⊆ Mod(f) („penguin birds usually do not fly“)
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Intuition for Preferential Reasoning

CPLpref

Typical reading:
α |∼Wβ if α, then usually β

PDLpref and TPLpref

Intuition (databases):

α |∼Wβ if in database that complies with α, usually β holds

Intuition (sensors):

α |∼β if β is supported by the most reliable sensors that support α
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Preferential Entailment: Extreme Cases

Inference mechanism over model W = ⟨S, ℓ,≺⟩ (for logic L = ⟨L,Ω, |=,⊩⟩):

α |∼Wβ if min(Mod(α),≺) ⊆ Mod(β)

All interpretations
Preferential Model WFull = ⟨SFull, ℓFull,≺Full⟩
• SFull = Ω
• ℓFull : SFull → Ω, ℓFull = id
• ≺Full = ∅ (empty SPO)

Preferential Entailment |∼WFull
:

|∼WFull
= ⊩

min(Mod(α),≺Full) = Mod(α)

Empty Set of States
Preferential Model W∅ = ⟨S∅, ℓ∅,≺∅⟩
• S∅ = ∅
• ℓ∅ = ∅
• ≺∅ = ∅ (empty SPO)

Preferential Entailment |∼W∅
:

|∼W∅
= L × L

min(Mod(α),≺∅) = ∅
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Possible World Interpretation

Example (uncertain microbiologist):
g ≃ has a certain gene
b ≃ shines blue
a ≃ eats amoebae

K = { b, =(g, b) , g ∨ a }

=(g, b) ≃ blue shining is determined
by having the gene

g ∨ a ≃ ‚¬g implies a‘

Teams that satisfy K:

X1 =
g b a

v1 1 1 1
v2 1 1 0

X2 = g b a
v3 0 1 1

Preferences for X1 and X2:
• X1 more plausible than X2

Preferential model W = ⟨S, ℓ,≺⟩:

S = {s1, s2} ℓ(s1) = X1

s1 ≺ s2 ℓ(s2) = X2

We have:

K ̸|= a K |̸∼Wa K ∪ {¬g} |∼Wa

K ̸|= =(a) K |̸∼W=(a) K ∪ {¬g} |∼W=(a)

K ̸|= g K |∼Wg K ∪ {a} |̸∼Wg

K |= =(g) K |∼W=(g) K ∪ {a} |∼W=(g)
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Axiomatic Characterization of CPLpref

α |∼α
(Ref)

α ≡CPL β α |∼ γ

β |∼ γ
(LLE)

α ∧ β |∼ γ α |∼β

α |∼ γ
(Cut)

α |=CPL β γ |∼α

γ |∼β
(RW)

α |∼β α |∼ γ

α ∧ β |∼ γ
(CM)

α |∼ γ β |∼ γ

α ∨ β |∼ γ
(Or)

System C = (Ref)+ (RW)+ (LLE)+ (CM)+ (Cut)
System P = System C + (Or)

Proposition (Kraus, Lehmann und Magidor, 1990)

The following statements are equivalent for CPL:

• |∼ satisfies System P
• |∼ is preferential (there is a preferential model W with |∼ = |∼W)
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Axiomatic Characterization For Free?

α |∼α
(Ref)

α ≡ β α |∼ γ

β |∼ γ
(LLE)

α ∧ β |∼ γ α |∼β

α |∼ γ
(Cut)

α |= β γ |∼α

γ |∼β
(RW)

α |∼β α |∼ γ

α ∧ β |∼ γ
(CM)

α |∼ γ β |∼ γ

α ∨ β |∼ γ
(Or)

System C = (Ref)+ (RW)+ (LLE)+ (CM)+ (Cut)
System P = System C + (Or)

Theorem
For PDL, the following is equivalent:

• |∼ satisfies System P
• |∼ is preferential stateme

nt does
not hol

d!
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General Results

Proposition

For PDL, every preferential entailment relation |∼W satisfies System C.

Proposition

There is a preferential entailment relation |∼W for PDL that violates (Or).

So... PDLpref

• satisfies System C, but
• violates System P.
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Violation of (Or) by PDL: Preferences are not required

α |∼ γ β |∼ γ

α ∨ β |∼ γ
(Or)

Setting:

α = β = γ = =(p) so, we have: α |= γ β |= γ

Consider the team X over {p, q} defined by:

p q
v1 1 0
v2 0 1

We obtain

X ̸|= α X ̸|= β X ̸|= γ X |= α ∨ β

Consequently, α ∨ β ̸|= γ
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Regain System P Satisfaction

Theorem

Let W = ⟨S, ℓ,≺⟩ be a preferential model for PDL.
The following statements are equivalent:

(i) |∼W satisfies System P.
(ii) The (⋆)-property holds:

min(Mod(α ∨ β),≺) ⊆ min(Mod(α),≺) ∪min(Mod(β),≺) (⋆)

(iii) The △-property holds:

for all s ∈ S with |ℓ(s)|> 1 exists s′ ∈ S with ℓ(s′)⊊ ℓ(s) and s′ ≺ s (△)
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Regain System P Satisfaction: Proof Idea (ii) ⇔ (iii)

(ii) The (⋆)-property holds:

min(Mod(α ∨ β),≺) ⊆ min(Mod(α),≺) ∪min(Mod(β),≺) (⋆)
(iii) The △-property holds:

for all s ∈ S with |ℓ(s)|> 1 exists s′ ∈ S with ℓ(s′)⊊ ℓ(s) and s′ ≺ s (△)

(ii) ⇒ (iii):
• Show (□): for each |X| > 1 there is Y with:

Y ⊊ X , Y ̸= ∅ , Y ≺ X

• For |X| ≥ 1 there is a formulas ΘX :

Y |= ΘX iff Y ⊆ X

• ΘX =
∨

v∈X(pv1 ∧ · · · ∧ pvn)

• For |X| > 1 there are non-empty Y,Z ⊊ X:
X ̸|= ΘY and X ̸|= ΘZ

• α = ΘY and β = ΘZ in (⋆):
min(S(α ∨ β),≺)⊆min(S(α),≺)∪min(S(β),≺)

• Hence, X /∈ min(Mod(α ∨ β),≺)
• Iteration of (□) yields (△)

(iii) ⇒ (ii):
• min(Mod(α),≺) are only singleton teams
• (⋆) inherited from classical logic
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Preferential PDL: The price of satisfying System P

Flattening of φ:

formula φf := φ[=(...) /⊤] ; i.e., replacing all dependence atoms by ⊤.

Example:

φ = a ∨=(a, b) φf = a ∨ ⊤

Theorem

Let W = ⟨S, ℓ,≺⟩ be a preferential model over PDL that satisfies System P.
For all α, β holds:

α |∼Wβ if and only if αf |∼W′β
f

where

• W′ = ⟨S ′, ℓ′,≺′⟩ denotes a preferential model for CPL
• obtained from W by consider only singleton teams.
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Preferential Dependence Logic: Examples

Subset-Order
Preferential Model Wsub = ⟨Ssub, ℓsub,≺sub⟩
• Ssub = Ω \ {∅}
• ℓsub : Ssub → Ssub, ℓsub = id
• ≺sub = ⊊

Preferential Entailment |∼Wsub
:

α |∼Wsub
β iff αf |=c βf

(Theorem from last slide)

Supset-Order
Preferential Model Wsup = ⟨Ssup, ℓsup,≺sup⟩
• Ssup = Ω \ {∅}
• ℓsup : Ssup → Ssup, ℓsup = id
• ≺sup = ⊋

Preferential Entailment |∼Wsup
:

|∼Wsup
= |=

(due to downward-closure)
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Results for TPLpref

Proposition

The following statements hold:

(a) PDL satisfies System C, but violates System P.
(b) TPL satisfies System P.

Proposition

Let W be a preferential model for TPL.
If (⋆) is satisfied for all formulas A,B, then |∼W satisfies System P, whereby:

min(Mod(A ∨B),≺) ⊆ min(Mod(A),≺) ∪min(Mod(B),≺) (⋆)

But, the converse is not always true.
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Violation of (Or) for TPLpref

Proposition

The entailment relation |∼Wpq
for TPL violates (Or).

We consider the teams Xpq = {v1}, Xpq = {v2}, and Xp↔q = {v1, v3}:

Xpq = p q
v1 1 1 Xpq = p q

v2 0 1 Xp↔q =
p q

v1 1 1
v3 0 0

Let Wpq = ⟨Spq, ℓpq,≺pq⟩ be the preferential model such that

Spq = {spq, spq, sp↔q} ℓpq(sX) = X Xp↔q ≺pq Xpq Xp↔q ≺pq Xpq

We obtain the following preferential entailments:

p |∼Wpq
q ¬p |∼Wpq

q p ∨ ¬p |̸∼Wpq
q

[
α |∼ γ β |∼ γ

α ∨ β |∼ γ
(Or)

]
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TPLpref: Apparent Paradoxical Situation

• CPLpref satisfies System P
• TPLpref violates System P

Proposition
If α, β ∈ PL are classical propositional formulas (in NNF):

α |=TPL β if and only if α |=CPL β

On one side with have flatness:

[Flatness] X |= α ⇐⇒ for all v ∈ X, {v} |= α.

On the other side, preferential models over teams are more expressive.
Furthermore:

• TPL is a fragment of PDL
• TPLpref and PDLpref are different
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CPLpref: Complexity of Preferential Entailment I
System P

α |∼α
(Ref)

α ≡c β α |∼ γ

β |∼ γ
(LLE)

α ∧ β |∼ γ α |∼β

α |∼ γ
(Cut)

α |=c β γ |∼α

γ |∼β
(RW)

α |∼β α |∼ γ

α ∧ β |∼ γ
(CM)

α |∼ γ β |∼ γ

α ∨ β |∼ γ
(Or)

Conditional (assertion): α |∼β

Conditional Knowledge base: set of conditionals K = {α1 |∼β1, α2 |∼β2 . . .}
Entailment: K |=P α |∼β if there is a System P proof for α |∼β when assuming K
Proposition (Lehmann und Magidor, 1992)
The following statements are equivalent:

• K |=P α |∼β

• α |∼β holds in all preferential models that satisfy K (K ⊆ |∼W implies α |∼Wβ)
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CPLpref: Complexity of Preferential Entailment II
Proposition (Lehmann und Magidor, 1992)

The following problem is coNP-complete:

Entailment
Given: Finite conditional knowledge base K and a conditional α |∼β

Question: Does K |=P α |∼β hold?

KSysP = {α |∼β | K |=P α |∼β}

• closure operator
• KSysP satisfies System P
Proposition
The following statements are equivalent:

• |∼ satisfies System P
• |∼ is preferential (preferential model W with |∼ = |∼W)
• there is some K with |∼ = KSysP
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PDLpref: Complexity of Preferential Entailment (w.r.t. W)
Representational Issues for W:

• Preferential models can be huge; Ω(22n), where n is the number of atoms
• Complexity results for the general case and succinct representations1

Ent(PDLpref)
Input: Formulas α, β,

preferential model W
Question: α |∼Wβ?

SuccEnt(PDLpref)
Input: Formulas α, β,

succinctly given preferential model W
Question: α |∼Wβ?

Theorem
Ent(PDLpref) is in Θp

2 and NP-hard.
Theorem
SuccEnt(PDLpref) is in Πp

2 and ∆p
2-hard.

Remark:

• Θp
2 = P||NP = PTIME with polynomial many parallel NP-oracle queries

• Πp
2 = coNPNP = coNP with NP-oracle queries

• ∆p
2 = P with NP-oracle queries

1By two (2n)O(1)-sized circuits (L,O) 33 / 37



Ent(PDLpref) is in Θp
2 and NP-hard.

Ent(PDLpref)
Input: Formulas α, β, preferential model W = ⟨S, ℓ,≺⟩
Question: α |∼Wβ?

[Membership.]

• The model checking problem for PDL is NP-complete [Ebbing et all, 2012]
• Θp

2 algorithm:
1. In parallel, ask the NP-oracle for each team T ∈ S whether T |= α and T |= β.
2. For every minimal element in the order induced graph (S,≺), if the oracle answers were of the

form (1, 0) (that is, α was satisfied but β not) then reject.
3. Accept.

[Hardness.]

• The model checking problem for PDL is NP-complete [Ebbing et all, 2012].
• Reduce model checking for PDL into Ent(PDLpref):

(T, α) 7→ (({T}, idS , ∅),⊤, α).
34 / 37



SuccEnt(PDLpref) is in Πp
2 and ∆p

2-hard.
SuccEnt(PDLpref)
Input: Formulas α, β, succinctly given preferential model W = ⟨S, ℓ,≺⟩
Question: α |∼Wβ?

Definition (Succinct representation (L,O))
Setting:

• N set of propositions with |N | = n,
• S = {0, 1}m be a set for m ∈ (2n)O(1),
• ≺ ⊆ S × S be a strict partial order.

For a preferential model W = ⟨S, ℓ,≺⟩ define two
(2n)O(1)-sized circuit families L,O (labelling,
ordering) such that the following is true:

1. ℓ is computed by L,
2. O : S × S ⇀ {0, 1} is a partial function such

that for s, s′ ∈ S, the circuit outputs 1 if and
only if s ≺ s′ is true.

[Membership.] Πp
2 algorithm:

1. Univerisally nondeterministically branch on all
elements s ∈ S specified by inputs to O, and
all assignments j : {x1, . . . , xn} → {0, 1}.

2. Existentially nondeterministically branch on all
s′ ∈ S

3. If j ̸= L(s) then accept.
4. If j ̸|= α or j |= β then accept.
5. If L(s′) |= α and O(s′, s) then accept.
6. Reject.

[Hardness.] Reduction from OddLexMaxSAT
which is ∆p

2-complete [Krentel, 1988]
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Complexity Results: Summary

Problem Tract. Complexity

Ent(CPLpref) ✓ ∈ P, NC1-hard
SuccEnt(CPLpref)>lex ✗ ∆p

2-complete
SuccEnt(CPLpref) ✗ ∈ Πp

2, ∆
p
2-hard

Ent(PDLpref) ✗ ∈ Θp
2, NP-hard

SuccEnt(PDLpref) ✗ ∈ Πp
2, ∆

p
2-hard

Ent(TPLpref) ✓ ∈ P, NC1-hard
SuccEnt(TPLpref) ✗ ∈ Πp

2, ∆
p
2-hard

Remarks:

• Complexity of Ent and SuccEnt for CPLpref was not known before
• Tight results are surprisingly hard to proof

36 / 37



Introduction and Motivation

1.
Logic Background

2.
Preferential Logics

3.
Axiomatics

4.
Complexity

Conclusion



Summary
Content
• Motivation

▶ Sensor data, epistemic
indistinguishability, ...

• Team-Semantics (PDL,TPL)
• Preferential Logics (PDLpref,TPLpref,CPLpref)
• Axiomatics of PDLpref (and TPLpref)

▶ Cumulative (System C)
▶ Violation of System P
▶ System P Characterization
▶ TPLpref is not fragment of PDLpref

• Complexity
▶ Ent and SuccEnt
▶ (In-)Tractability

Problem Tract. Complexity

Ent(CPLpref) ✓ ∈ P, NC1-hard
SuccEnt(CPLpref)>lex ✗ ∆p

2-complete
SuccEnt(CPLpref) ✗ ∈ Πp

2, ∆
p
2-hard

Ent(PDLpref) ✗ ∈ Θp
2, NP-hard

SuccEnt(PDLpref) ✗ ∈ Πp
2, ∆

p
2-hard

Ent(TPLpref) ✓ ∈ P, NC1-hard
SuccEnt(TPLpref) ✗ ∈ Πp

2, ∆
p
2-hard

Future work
• Complexity results (tight)
• More on axiomatizations
• Other team-based logics
• Conditionals
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