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combine

Preferential Reasoning

(injection of extra-logical information into reasoning)

and

Team-based Reasoning

(reasoning in presence of plurality of objects)



Motivation I: Reasoning over different data sources

Living in a world of many sensors:

= Provide large amounts of data
= Different reliability

One scenario:

= Set of sensors S = {s1, s2,...}
= Each sensor s has a database £(s)
= < ordering over the sensors; meaning:

81 < 8o if s1 is strictly more reliable then so
Research question:

= Sensor s supports a, if a holds in £(s)
= Investigate the following kind of reasoning

a v B if B is supported by the most reliable sensors s; whose data support

Essentially: combination of preferential reasoning with team-based reasoning
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Motivation Il: Epistemic Indistinguishability

Agents might not be able to distinguish all possible worlds

= Considered in Kripke semantics of Epistemic Modal Logic
= States are possible worlds

= Reachability relation = indistinguishability relation
Combination of with preferential reasoning in classical setting difficult

= Classical languages cannot to not have the means

= Combining preferences with Kripke-structures is cumbersome/unclear

Potential approach: combination of preferential reasoning with team-based reasoning

E.g, permits investigation of the following kind of reasoning:

apv B if it is plausible that when the agent beliefs «, then also g
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Motivation IlI: Theoretical Advancement

Preferential Reasoning has many been study with classical logics in mind

Closure under Boolean operations is not always given

= Learned system
= Also classical systems are not always Boolean, e.g., context-free languages

Team-based logics

= Connective are not classical
= Well studied and understood
= Intuition and perspectives known

Promising testbed for study preferential reasoning: combination with team-based reasoning
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Logics considered

CPL - Propositional Logic with Classical Semantics
Syntax: p =X |~ | T|L|@eAp|pVe
Semantics: via valuation functions

PDL - Propositional Dependence Logic
Syntax: o :=3X | =X | T | L | <p/\g0|g0Vg0|=<§_f,E)
Semantics: via teams (sets of valuation functions)

TPL — Propositional Logic with Team-semantics
Syntax: p ==X | =X | T|L|eAp|eVe
Semantics: via teams (sets of valuation functions)

+ their preferential versions CPl”', PDI”, and TPL>
(next section)
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Propositional Dependence Logic: Syntax

Language of propositional dependence logic PDL over ¥ = {p1,...,pn}:
pu=3|-Z|T|LlpAeleve|=(5T)

Notable aspects:

Negation only in literals Dependence atoms
= —pV —g (valid formula) » =(a1,...,am,b)
= —(p A q) (invalid formula) = value of b depends on aq,...,a,

= Not closed under negation!

Example formulas:

= gVa (g implies* a)
= =(a,b)Aa (a holds and b depends on a)
= =(c) (c has always the same value)
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Propositional Dependence Logic: Semantics

Classical Interpretations (propositional logic):
QF={v|v:X—{0,1} }

Team Semantics
Interpretations:

Q=PO)={X|XCO}

For X € Q:
XEp iff forallve X, vEp;
X E-p iff for all v € X, v £° p;
XEL iff X =10;
XET is always the case;
XEang iff X EoaandX |=pg;
XEaVvp iff there exist Y, Z C X such that
X=YUZ YEaandZ[EpB;
X E =(a,b) iff for all v,v" € X,

v(a@) = v'(a@) implies v(b) = v'(b).
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lllustration for =(a, b)

Semantics of =(d, b)

X | =(a,b) iff forall v,v' € X,
v(@) = v'(a@) implies v(b) = v'(b).

Example

a b ¢ e b e

xn="|'H"° Xo= v | 1000 0

vz | 12001 v |10 1

v |0 1 1 2

Evaluation works as follows:

X1~ =(a,b) X = =(b) vV =(b)
X2 ': :(a,b) Y = {1)1,’[}3} Z = {’U2}
X1 = =(b) Xi=YuZz

Ye=0)  ZE=0)
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Motivation for Dependence Logic |

Relational Databases Inquisitive logic (The Logic of Questions?)

Interpret teams as database tables: Define a question operator 7p by:
XEMD iff XEporX[E-p

Interpret teams as answers for a question.
Answers for 7p:

Formulas ~ integrity constraints. pq g
X [ ¢ amounts to checking whether ¢ holds

for X.

Example: P P
X | =(id,col1) A... A=(id,col,) is a key

constraint. but not for (?p) A =(p, q)

2Ciardelli: Inquisitive Logic. Springer, 2022
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Entailment for Dependence Logic

Model sets:
Mod(a) ={X | X E a} Mod(K) ={X |foralla € K : X = o}

=PPL are defined as usual:

Entailment PPt and equivalence
a =Pt 8 if Mod(a) € Mod(B) K E=PPL B if Mod(K) C Mod(3)

a =Pt B if Mod(a) = Mod(p)
Intuition (databases):
«a |:PDL B if every database that complies with « also complies with 3
Intuition (sensors):
«a |:PDL B if every sensor that supports « also supports

If o, B € PL are classical propositional formulas (in NNF):

o =Pt B if and only if o =PPY B if and only if a =L B
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Motivation for Dependence Logic Il

Possible World Interpretation — More expressible agents/knowledge bases?

Example (uncertain microbiologist):
g =~ has a certain gene

b =~ shines blue

a o~ eats amoebae

K={b, =(g,b),—|gVa}

=(g,b) =~ blue shining is determined
by having the gene
-gVa =~ g impliesa'

Teams that satisfy K:

Proposal for interpretation:
= Teams as model sets of K
= Two layers:

> worlds (=assignments)
> joint observable worlds (=teams)

We have:

Kl}a
K [ =(a)

Kltg
K E=(9)
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Preferential Logics: Models

(Model-Theoretic) Logic .£ = (L, Q, =, IF)
= L Formulas
= () Interpretations
= = C Q x £ Model-Relation
= | C L x L Entailment
Relational Model for .
Relational Model (S, ¢, R)
= S set of states
= /5> 0
= R C S x &S binary relation on §

‘ Notions:

= S(a) ={s €S| L(s) o}

» min(S(a), R)={s € S(a) | As’ € S(a) : s'Rs}

Preferential Model for .¥

Preferential Model W = (S, ¢, <)
n (S,4,<) is relational model
= < strict partial order on S

= Smoothness: for all & and s € S(a)

> s € min(S(a), <) or
> there exist t < s with ¢ € min(S(a), <)

Remarks:

s S(a) # 0 implies min(S(a), <) # 0
= well-foundedness is not enough
Notation:

min(Mod(a), <) = {£(s) | s € min(S(a), <)}
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Preferential Logics: Entailment

Preferential Entailment

Entailment |, defined by preferential Model W = (S, ¢, <) :

a vy B if min(S(a), <) C S(B) (equivalently: min(Mod(e), <) € Mod(f))

Every W for £ defines a
preferential logic (£, ), =, pay)

Families of Preferential Logics

= PDL Preferential propositional dependence logic
= CPL* preferential entailment of propositional logic with classical semantics

= TPL preferential entailment of propositional logic with team-based semantics

14/37



lllustration

Preferential Model: W = (S, £, <) Inference: a vy B if min(S(a), <) C S(B)
S: .
We have the following:
n awﬂ
S(e) Because of:
min(S(a), <) € S(B)
Y
= oAy Py
Because of:
min(S(a A7), <) £ S(B)
= This is called non-monotonicity
Y

15/37



Obligatory Bird Example

_ ‘ b p f . ‘ b p f
XF_vl\lol XP_v2\110
Let W = (Speng, £peng, <peng) be the preferential model such that
Speng = {SF, SP} epeng(si) = X'L SF <peng sp
We obtain the following inferences:
b f min(Mod(b), <peng) = {Xr} € Mod(f) (,,birds usually fly*)
Py f min(Mod(p), <peng) = {Xp} C Mod(—f) (,penguins usually do not fly")
bAp oy f min(Mod(b A p), <peng) = {Xp} € Mod(f)  (,penguin birds usually do not fly")
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Intuition for Preferential Reasoning

CPL
Typical reading:

a pvy B if @, then usually 8

PDL™ and TPL™

Intuition (databases):

a pvy B if in database that complies with «, usually 8 holds
Intuition (sensors):

a v B if B is supported by the most reliable sensors that support «
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Preferential Entailment: Extreme Cases

Inference mechanism over model W = (S, ¢, <) (for logic .« = (L, Q, =, IF)):
a vy B if min(Mod(ax), <) € Mod(f)

All interpretations
Preferential Model Wy = (Srunl, £rull; <Full) Preferential Entailment }VWM”:

» Spun =2
}NWFuu =IF

® lran: Srun — Q, Ly =1d .
» <pa = 0 (empty SPO) min(Mod(a), <Fui) = Mod(a)

Empty Set of States

Preferential Model Wy = (Sp, £g, <p) Preferential Entailment v, -
L] S@ = @
u % = @ }’VW@ =LXxXL
= <p =0 (empty SPO) min(Mod(a), <g) =0
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Possible World Interpretation

Example (uncertain microbiologist):
g =~ has a certain gene

b =~ shines blue

a =~ eats amoebae

K ={b=(g9,b),9Va}

=(g,b) =~ blue shining is determined
by having the gene
gVa =~ ,~gimplies a'

Teams that satisfy K:

Preferences for X; and Xs:
= X; more plausible than X5
Preferential model W = (S, ¢, <):

S = {81, 82} Z(sl) = X1
81 < 82 K(SQ) = X5
We have:

Kita K Paya K U{~g} hya
K} =(a) Kpy=(a) KU{~g}ry=(a)

Kltg K by K U{a} by
KE=(9) Kbw=(9) KU{a}hryu=(9)
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Axiomatic Characterization of CPL*

o (Ref) a ':CP;fvg Tha (RW)
a=L g apy abB  alpy
BF (LE) N BR (M)
aABpy apB apy  Bhy
akr $ “avBRhy O

System C = (Ref) + (RW) + (LLE) + (CM) + (Cut)
System P = System C + (Or)

Proposition (Kraus, Lehmann und Magidor, 1990)

The following statements are equivalent for CPL:

= |~ satisfies System P
= |~ is preferential (there is a preferential model W with ~ = E\O‘W 3)7



Axiomatic Characterization For Free?

aEB vha
e (Ref) ; (RW)

a=p8 apby apB  aby
Ak WF “anghy M

anfiy apB apy  Bbo
ab e “avAhy 7

System C = (Ref) + (RW) + (LLE) + (CM) + (Cut)
System P = System C + (Or)

For PDL, the following is equivalent:

= |~ satisfies System P

= |~ is preferentia
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General Results

For PDL, every preferential entailment relation py, satisfies System C.

There is a preferential entailment relation f~,, for PDL that violates (Or).
So... PDI

= satisfies System C, but
= violates System P.
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Violation of (Or) by PDL: Preferences are not required

aby  Bhy ;
aVpBhy (0r)

Setting:

a=p=v==(p) so, we have: alEy BE~Y

Consider the team X over {p, q} defined by:

b q
V1 1 0
V2 0 1
We obtain
Xa X B X iy Xkavp

Consequently, a V 3 [~ v
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Regain System P Satisfaction

Let W = (8,4, <) be a preferential model for PDL.
The following statements are equivalent:

(i) Py satisfies System P.
(ii) The (x)-property holds:

min(Mod(a V ), <) € min(Mod(«), <) U min(Mod(B), <)

(*)
(iii) The A-property holds:

for all s € S with |{(s)| > 1 exists s' € S with £(s') C£(s) and s’ < s

(A)
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Regain System P Satisfaction: Proof Idea (ii) < (jii)

(i) The (x)-property holds:

min(Mod(a V ), <) € min(Mod(«), <) U min(Mod(B), <) (%)
(iii) The A-property holds:
for all s € S with |[€(s)| > 1 exists s’ € S with £(s') C£(s) and s’ <s (A)
(it) = (iii):
= Show (OJ): for each | X| > 1 there is Y with: = For |X| > 1 there are non-empty Y, Z C X:
X b’é 9y and X bé @Z
YCX, Y#0, Y <X

» a=0Oy and =0z in (¥):
min(S(a V B), <)C min(S(a), <)Umin(S(3), <)
= Hence, X ¢ min(Mod(a V ), <)
YEOxiffy € X = lteration of (O) yields (A)

= Ox =V,ex® A~ ADY) (i) = (ii):
= min(Mod(a), <) are only singleton teams

= For | X| > 1 there is a formulas O x:

= (%) inherited from classical logic
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Preferential PDL: The price of satisfying System P

Flattening of ¢:

formula ¢f := ¢[=(...) / T] ; i.e., replacing all dependence atoms by T.

Example:

¢ =aV=(a,b) ¢/ =avT

Theorem

Let W = (S, £, <) be a preferential model over PDL that satisfies System P.
For all o, 8 holds:

abwyB ifandonly if o by 87
where

» W = (8,¢,<’) denotes a preferential model for CPL
= obtained from W by consider only singleton teams.
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Preferential Dependence Logic: Examples

Subset-Order

Preferential Model Wqyp = (Ssub, £subs <sub) Preferential Entailment fvwsub:
. =0
sub \{Q} . Oé}’VW bﬂ iff Oéf ’:C ,Bf
® loub : Ssub — Ssub, fsub = id s
— (Theorem from last slide)
" <sub = Q

Supset-Order
Preferential Model Wy, = (Ssup; fsup, <sup) Preferential Entailment f\‘wsup:

. Sup =2\ {0} N

" esup : Ssup — Ssup: gsup =id
" <o = 2 (due to downward-closure)
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Results for TPL*

Proposition
The following statements hold:

(a) PDL satisfies System C, but violates System P.
(b) TPL satisfies System P.

Proposition

Let W be a preferential model for TPL.
If (%) is satisfied for all formulas A, B, then h, satisfies System P, whereby:

min(Mod(A V B), <) € min(Mod(A4), <) Umin(Mod(B), <) (%)

But, the converse is not always true.

28/37



Violation of (Or) for TPL*

Proposition

The entailment relation f~y, for TPL violates (Or).

We consider the teams X, = {v1}, X5, = {v2}, and Xpq = {v1,v3}:

P q
P q P q
qu:;‘i qu:;‘i Xpog= v1 |1 1
U1 1 1 V2 0 1 s 0 0
Let Woq = (Spqs £pq> <pq) be the preferential model such that
Spa = {8pa> S5¢1 Spera lpg(sx) =X Xperg <pq Xpg Xperg <pq X5q

We obtain the following preferential entailments:

apfy  Bha
Phw,a “Phw, a PV Py, g VBl (Or)
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TPL*: Apparent Paradoxical Situation

= CPL* satisfies System P
= TPl violates System P

If a, B € PL are classical propositional formulas (in NNF):

a ="Pt B if and only if « =Pt B

On one side with have flatness:

[Flatness] X Fa <= forallve X, {v} .

On the other side, preferential models over teams are more expressive.
Furthermore:

= TPL is a fragment of PDL
s TP and PDIP™ are different
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CPL*: Complexity of Preferential Entailment |

System P . aE B vha
T aka (Ref) . (RW)
a="8 apy a8 aky
BF (LE) NI (€M)
aABply aplpB apy  Bhy
aky ) Tavihy

Conditional (assertion): a |~
Conditional Knowledge base: set of conditionals K = {a1 (1,02~ fB2...}
Entailment: K =P o | 3 if there is a System P proof for o~ 3 when assuming K

Proposition (Lehmann und Magidor, 1992)

The following statements are equivalent:
- KEPapp
» a3 holds in all preferential models that satisfy K (K C vy implies oy 8)
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CPL*: Complexity of Preferential Entailment Il

Proposition (Lehmann und Magidor, 1992)

The following problem is coNP-complete:

ENTAILMENT
Given: Finite conditional knowledge base K and a conditional o~ 8
Question: Does K =P o[~ 8 hold?

K = {avf | KD abf)

= closure operator
s KS¥P satisfies System P

The following statements are equivalent:

= |~ satisfies System P
= |~ is preferential (preferential model W with |~ = puy)

= there is some K with |~ = K5
32/37



PDL": Complexity of Preferential Entailment (w.r.t. W)

Representational Issues for W:

= Preferential models can be huge; Q(22"), where n is the number of atoms
= Complexity results for the general case and succinct representations!

ENT(PDL™) SuccENT(PDL)
Input: Formulas «, 3, Input: Formulas a, 3,

preferential model W succinctly given preferential model W
Question: o vy, 3?7 Question: o v, 8?
ENT(PDL™) is in ©% and NP-hard. SuccENT(PDL™) is in II5 and Ab-hard.
Remark:

= O = PIINP = PTIME with polynomial many parallel NP-oracle queries
o I = coNPNP = coNP with NP-oracle queries

= AP = P with NP-oracle queries
1By two (27)9(M)_sized circuits (£, O)
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ENT(PDL™) is in ©% and NP-hard.

ENT(PDL)
Input: Formulas «, 3, preferential model W = (S, ¢, <)
Question: a vy, 57

[Membership.]

» The model checking problem for PDL is NP-complete [Ebbing et all, 2012]
= OF algorithm:
1. In parallel, ask the NP-oracle for each team T € S whether T =« and T |= 3.
2. For every minimal element in the order induced graph (S, <), if the oracle answers were of the
form (1,0) (that is, o was satisfied but 3 not) then reject.
3. Accept.

[Hardness.]

= The model checking problem for PDL is NP-complete [Ebbing et all, 2012].
= Reduce model checking for PDL into ENT(PDL™):

(T,a) — (({T},ids, 0), T, ).
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SuccENT(PDL*) is in IT5 and A%-hard.

SuccENT(PDL™)

Input: Formulas a, 3, succinctly given preferential model W =

Question: a vy, 57

Definition (Succinct representation (£, 0))

Setting:

= N set of propositions with |[N| = n,
= S=1{0,1}" be a set for m € (27)°M),
= < C S XS be a strict partial order.

For a preferential model W = (S, ¢, <) define two
(27)°(W_sized circuit families £, O (labelling,
ordering) such that the following is true:

1. ¢ is computed by L,
2. 0: 8§ xS — {0,1} is a partial function such

that for s, s’ € S, the circuit outputs 1 if and
only if s < s’ is true.

(S,4,<)

Membership.] I} algorithm:

g w

6.

1. Univerisally nondeterministically branch on all
elements s € S specified by inputs to O, and
all assignments j: {z1,...,z,} — {0,1}.
Existentially nondeterministically branch on all
ses

If j # L(s) then accept.

If 5 = « or j |= B then accept.

If L(s') &= a and O(s', s) then accept.

Reject.

Hardness.] Reduction from ODDLEXMAXSAT
which is Ab-complete [Krentel, 1988]
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Complexity Results: Summary

Problem Tract. Complexity

ENT(CPL™) v €P,NC'-hard
SUCCENT(CPL)s, . X  Ab-complete

SuccENT(CPL) X eIIf, Ab-hard
ENT(PDL™) X € ©%, NP-hard
SuccENT(PDL) X €IIf, Ab-hard
ENT(TPL™) v €P, NC'-hard
SucCENT(TPL™) X eI}, Ab-hard

Remarks:

= Complexity of ENT and SUCCENT for CPL* was not known before
= Tight results are surprisingly hard to proof
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Conteal Problem Tract. Complexity
= Motivation I

> Sencor data. coistemic ENT(CPL™) v €P, NClhard

e SUCCENT(CPE®)s, X  AP-complete

SIS o SUCCENT(CPL™) X €T, AP-hard

= Team-Semantics (PDL,TPL) Ext(PDEY) = P pep—

R R pref pref pref NT 5= € R0 -nar

» Preferential Logics (PDL™, TPL™,CPL™") SuccENT(PDL™) X €I, AP-hard
= Axiomatics of PDI" (and TPL™) ; 1

» Cumulative (System C) Ent(TPL™) 7 S5 ME R

Y SUCCENT(TPL™) X eTI8, Al-hard

» Violation of System P
» System P Characterization
» TPL* is not fragment of PDL*™ Future work

= Complexity = Complexity results (tight)
» ENT and SUCCENT = More on axiomatizations
» (In-)Tractability = Other team-based logics

= Conditionals

Thanks for your attention! 37,37



