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Abstract. This paper investigates variable forgetting and marginaliza-
tion in propositional logic. We show that for finite signatures and infinite
signatures, variable forgetting and marginalization are corresponding
operations, i.e., they yield semantically equivalent outputs for respective
complementary inputs. This observation holds for formulas and also for
sets of formulas. For formulas, both operations, variable forgetting and
marginalization, are shown to be compatible with disjunctions, but not
with conjunction, implication and negation. For general sets of formulas,
a consequence is that the element-wise application of these operations to
a set of formulas and the application to a formula equivalent to this set
are not equivalent in general. However, for every deductively closed set
X, we show that the element-wise application of variable forgetting or
marginalization, respectively, and the application to any formula equiv-
alent to X are equivalent. This latter observation is important because
deductively closed sets play an important role in many areas, e.g., in
logic-based approaches to knowledge representation and databases.

1 Introduction

Focusing on relevant information is a key ability of intelligent agents to reason
and thus an important concern of artificial intelligence, in particular in the field of
knowledge representation (KR) where research deals with representing knowledge
and belief most adequately in a formal way. Whenever we set up a toy example or
a large model for an application in KR, we expect that all variables that we deem
to be irrelevant to our model and thus are left out, do not have any influence
on reasoning processes and outcomes. For example, when we write an answer
set program to provide medical knowledge for finding a best cancer therapy for
a patient [25], we would like to safely forget variables that speak about, e.g.,
the weather. More precisely, we expect that the recommended therapy would
be the same even if we had taken those variables into account. Similarly, in the
well-known Tweety example, we expect the penguin Tweety not to fly even if
we had taken dozens of other animal species into account. Such expectations
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might be justified by a principle analogous to what is known as the principle of
irrelevant alternatives in social choice theory [22] – adding irrelevant variables
should not change the inferences. This is also the basic idea of syntax splitting in
nonmonotonic inductive reasoning and belief revision [19,13,10].

For logic-based artificial intelligence, many such forgetting approaches are
known, for an overview see [6]. Several approaches considered here fall into the
tradition of variable forgetting [17], i.e., approaches that remove signature elements
from a given logical representation. Variable forgetting is also known as variable
elimination [15] and has been studied for many formalisms like propositional
logic [15], first-order logic [17], description logics [14,18], modal logic [27,24,5],
etc. [8,26,16]. Closely related to variable forgetting is also the computation of
the uniform interpolant [18].

Technically, in the most basic case where a variable a is to be forgotten from
a propositional formula A, variable forgetting is implemented by the disjunction
of the two modifications of A that arise if a is set to ⊤ resp. ⊥ [15]. The resulting
formula in which a does not occur anymore thus takes both possibilities of a
being true or false into account, but abstracts from the specific outcome.

In probability theory, there is a similar (semantic) operation called marginal-
ization [20]: the marginal probability of a formula A defined over a signature
Σ\{a} is the sum of the probabilities of all worlds ω whose Σ\{a}-part is a model
of A and whose a-part can be positive or negative. This means that semantic
marginalization executes the modifications regarding the truth values of a on the
models. Marginalization can be defined in a straightforward way also for Spohn’s
ranking functions [23] and for total preorders [13] that both play a major role for
nonmonotonic reasoning and belief revision. The question arises whether there
are formal relationships between these two operations of forgetting variables
in the syntax resp. semantics, and how exactly they can be made explicit. In
particular, in the context of nonmonotonic reasoning resp. belief revision and
syntax splitting [13,10], a most relevant question would be if the belief set induced
by a marginalized ranking function or a total preorder, respectively, coincides
with the result of applying the syntactic operation of variable forgetting to the
belief set of the original function. Since belief sets are deductively closed, this
leads us naturally to investigations of variable forgetting on sets of formulas, its
interactions with Boolean connectives, and its behaviour under deductive closure.

In this paper, we elaborate on the correspondences between variable forgetting
and marginalization in propositional logic for finite and infinite signatures. Our
main contributions are summarized in the following3:

(1) Variable forgetting and marginalization are two sides of the same coin, se-
mantically. We show that for a formula φ over Σ, the marginalization of
Mod(φ) to Γ yields the same as the models of forgetting variables Σ \ Γ in
φ. This give reason to define the novel notion of syntactic marginalization of
Γ , defined as forgetting variables Σ \ Γ in φ. Our results carry over to sets.

3 The proofs for the propositions and theorems of this paper are available in the
accompanying supplementary material.
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(2) Determine the compatibility of syntactic marginalization with Boolean connec-
tives. We consider whether marginalization of a complex formula is equivalent
to performing marginalization of the sub-formulas instead. Our investigations
show that syntactic marginalization, and thus also variable forgetting, are
compatible with disjunction, but incompatible with conjunction, negation
and implication.

(3) Syntactic marginalizing of a set of formulas does not commute with marginal-
ization of a formula that is equivalent to that set. In general, performing
syntactic marginalizing on each element of a set of formulas Γ does not yield
a result equivalent to the syntactic marginalization of φ with φ ≡ Γ .

(4) Syntactic marginalizing of a deductively closed set of formulas does commute
with marginalization of a formula that is equivalent to that set. Syntactic
marginalizing of each element from a deductively closed set of formulas Γ does
yield a result equivalent to the syntactic marginalization of φ with φ ≡ Γ .

We also show that syntactic marginalization is related to the minimal set of syn-
tax elements required for representing a formula. Note that (3) and (4) provide
insights on the marginalization-compatibility of different representations for sets
of formulas. Because of (3), for knowledge-based systems that execute marginal-
izations, representation does matter, and one has to be careful when invoking
classical equivalences between representations. Furthermore, (4) guarantees that
when representing a deductive closed set of formulas K, typically also called a
belief set, by an equivalent formula A, i.e., A ≡ K, then marginalization can be
safely applied.

Note that for the formulation of properties and theorems we establish in
this paper we focus on viewpoint of syntactic marginalization. Due to (1), all
these properties, theorems and the contributions mentioned above also apply to
variable forgetting and (model)-marginalization.

This paper is organized as follows. The next section provides the background
on logic and further preliminaries. In Section 3, we establish that, semantically,
variable forgetting and (model)-marginalization are dual operations. Furthermore,
we define syntactic marginalization. Section 4 considers the connection between
syntactic marginalization of a formula A and the minimal set of signature elements
required for a formula to be equivalent to A. In Section 5, we determine the
compatibility of connectives with syntactic marginalization. The general case
of marginalization of arbitrary sets of formulas is considered in Section 6. The
case of deductively closed sets is considered in Section 7. Section 8 discusses
representational aspects and further results on the marginalization of deductively
closed sets of formulas. In Section 9, we conclude and point out future work.

2 Preliminaries and Background

Let Σ = {a, b, c, . . .} be a (possible infinite) signature, whose elements are called
atoms or variables, and let LΣ = {A,B,C, . . .} denote the finitely generated
propositional language over Σ. For conciseness of notation, we sometimes omit
the logical and -connector, writing AB instead of A ∧B, and overlining formulas
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will indicate negation, i.e., A means ¬A. Furthermore, we require L to contain ⊤
and ⊥, where ⊤ is interpreted, as usually, as a tautology, and ⊥ as a contradiction.
Let ΩΣ denote the set of all possible worlds (propositional interpretations) over
Σ. As usual, ω |=Σ A means that the propositional formula A ∈ LΣ holds in the
possible world ω ∈ ΩΣ , and ModΣ(A) = {ω | ω |=Σ A} denotes the set of all
such possible worlds. With A ≡Σ B we denote semantic equivalence defined as
usually, i.e. ModΣ(A) = ModΣ(B). With CnΣ(A) = {F ∈ LΣ | A |=Σ F} we
denote the set of all logical consequences of A and say that L ⊆ LΣ is deductively
closed if CnΣ(L) = L. To simplify notation in the following, if Σ is finite, we will
use ω both for the model and the corresponding complete conjunction containing
all atoms either in positive or negative form. We say a formula A is contingent if
A ̸≡ ⊤ and A ̸≡ ⊥. For a set X ⊆ LΣ of formulas, we lift the models relation to
X by defining ω |=Σ X if ω |=Σ A for all A ∈ X. The above-mentioned notions
carry over to sets of formulas in the usual way, e.g., the set of models of X is
ModΣ(X) = {ω | ω |=Σ X}, semantical equivalence of A ∈ LΣ and X is X ≡Σ A
if ModΣ(A) = ModΣ(X), and so forth. We assume that signatures are always
non-empty sets, which applies especially to subsignatures Γ ⊆ Σ. If A ∈ LΣ is
a formula, then Sig(A) denotes the atoms that appear in A. Furthermore, the
minimal set of signature elements (in terms of set inclusion) of a formula that is
equivalent to A is denoted by Sigmin(A). Parikh showed that Sigmin(A) is unique
and hence well-defined [19, Lem. 2]. Note that Sigmin(A) = ∅ holds if and only
if A ≡ ⊥ or A ≡ ⊤ holds. Moreover, negation is a neutral operation regarding
minimal signatures, i.e., Sigmin(A) = Sigmin(¬A). For a deductively closed set of
formulas CnΣ(X) we denote its signature with Sig(CnΣ(X)) = Σ.

3 Marginalization and Variable Forgetting for Formulas

In this section, we start by introducing the basic notions of variable forgetting
and marginalization. Then, we will define a syntactic version of marginalization
and establish the connection between these three operations.
Variable Forgetting. Forgetting in a logical setting is sometimes understood
as removing a variable by an syntactic operation. The approach is rooted in the
work of Lin and Reiter [17], which established a whole line of research on that
topic, e.g., [15,4]. However, the technical notion but was introduced by Boole [3].

Definition 3.1 (variable forgetting [15]). Let A ∈ LΣ be a formula, let a ∈ Σ
be an atom, and let Γ ⊆ Σ be a subsignature. The variable forgetting of a in A,

VarForget(A, a) = A[a/⊤] ∨A[a/⊥] ,

arises from A by replacing all occurrences of a by ⊤, yielding A[a/⊤], and by
replacing all occurrences of a by ⊥, yielding A[a/⊥]. The variable forgetting of
Γ in A, denoted by VarForget(A,Γ ), is the result of successively eliminating all
variables of Γ in A that appear in Sig(A).

Note that VarForget(A,Γ ) is a proper propositional formula; as Sig(A) is always
finite, also VarForget(A,Γ ) is finite. It has been shown that VarForget(A,Γ )
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yields a syntactically equivalent formula (up to associativity of disjunction) for
every order on Γ [15]. Clearly, when one is interested in the exact syntactic result
of VarForget(A,Γ ), order of execution matters. However, as we consider here
semantic equivalences, we not investigate this further.

Example 3.2. Let Σ = {t, b, c} be a signature where the atoms have following
intended meaning: t stands for “tea is served”, and b stands for “biscuits are served”,
and c stands for “coffee is served”. We consider the formulas A = (t ∨ c) → b
(“When tea or coffee are served, then biscuits are served”) and B = (t ∨ c) ∧ b
(“tea or coffee are served, and also biscuits are served”). Various different variable
eliminations in A and B are:

VarForget(A, t) = ((⊤ ∨ c) → b) ∨ ((⊥ ∨ c) → b) ≡{c,b} c → b

VarForget(A, c) = ((t ∨ ⊤) → b) ∨ ((t ∨ ⊥) → b) ≡{t,b} t → b

VarForget(A, b) = ((t ∨ c) → ⊤) ∨ ((t ∨ c) → ⊥) ≡{t,c} ⊤
VarForget(B, t) = ((⊤ ∨ c) ∧ b) ∨ ((⊥ ∨ c) ∧ b) ≡{c,b} b

VarForget(B, c) = ((t ∨ ⊤) ∧ b) ∨ ((t ∨ ⊥) ∧ b) ≡{t,b} b

VarForget(B, b) = ((t ∨ c) ∧ ⊤) ∨ ((t ∨ c) ∧ ⊥) ≡{t,c} t ∨ c

Variable forgetting of the signature Γ = {t, c} in A and B yields the following:

VarForget(A,Γ ) = VarForget(A, t)[c/⊤] ∨VarForget(A, t)[c/⊥]

= (A[t/⊤] ∨A[t/⊥])[c/⊤] ∨ (A[t/⊤] ∨A[t/⊥])[c/⊥]

= (((⊤ ∨⊤) → b) ∨ ((⊥ ∨⊤) → b)) ∨ (((⊤ ∨⊥) → b) ∨ ((⊥ ∨⊥) → b)) ≡Γ ⊤

VarForget(B,Γ ) = VarForget(B, t)[c/⊤] ∨VarForget(B, t)[t/⊥]

= (B[t/⊤] ∨B[t/⊥])[c/⊤] ∨ (B[t/⊤] ∨B[t/⊥])[c/⊥]

= (((⊤ ∨⊤) ∧ b) ∨ ((⊥ ∨⊤) ∧ b)) ∨ (((⊤ ∨⊥) ∧ b) ∨ ((⊥ ∨⊥) ∧ b)) ≡Γ b

A and B could be viewed as general knowledge about different serving practices.
However, when being in a specific context, e.g., in a tearoom, it’s sufficient (or
even rational) to reason and discuss only tea and biscuits as in VarForget(A,Γ )
and VarForget(B,Γ ) because there will be no coffee at all.

Model Marginalization. Another approach to forgetting is marginalization,
which is rooted in probability theory [20]. In contrast to variable forgetting,
marginalization is defined on interpretations, using the idea of Γ -parts of in-
terpretations. For a subsignature Γ ⊆ Σ and an interpretation ω ∈ ΩΣ we
denote the Γ -part of ω with ωΓ ∈ ΩΓ , mentioning exactly the atoms from Γ ,
i.e., ωΓ : Γ → {0, 1} with ωΓ (a) = ω(a) for all a ∈ Γ . Marginalization is then
the reduction to the Γ -part of an interpretation.

Definition 3.3 (model marginalization, ModMgΣ(ω, Γ ), ModMgΣ(M,Γ )).
Let ω ∈ ΩΣ, let M ⊆ ΩΣ, and let Γ ⊆ Σ. We say ModMgΣ(ω, Γ ) = ωΓ is the
(model) marginalization of ω from Σ to Γ . The element-wise marginalization of
all ω ∈ M from Σ to Γ is called (model) marginalization of M from Σ to Γ ,
denoted by ModMgΣ(M,Γ ) = {ModMgΣ(ω, Γ ) | ω ∈ M}.
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When viewing a logic as an institution [7], the marginalization of models
to a subsignature as given in Definition 3.3 is just a special case of the general
forgetful functor Mod(φ) from Σ-models to Γ -models induced by any signature
morphism φ from Γ to Σ. The special case of Definition 3.3 is given by the
forgetful functor Mod(ι) induced by the signature inclusion ι : Γ → Σ (cf. also
[1]). In the following, we consider an example on model marginalization:

Example 3.4. Consider again Σ = {t, b, c} from Example 3.2. For illustration
of the model marginalization of individual interpretations, consider ω1 = tcb
(“coffee and biscuits are served, but no tea”) and ω2 = tcb (“coffee is served,
but no tea and biscuits”) and the subsignature Γ = {t, b}. The Γ -part of ω1 is
ωΓ
1 = tb. Likewise, the Γ -part of ω2 is the same, i.e., ωΓ

2 = tb. Consequently, the
marginalization of these interpretations is as follows (“biscuits are served, but no
tea”):

ModMgΣ(ω1, Γ ) = ωΓ
1 ModMgΣ(ω2, Γ ) = ωΓ

2 = tb

The models A = (t ∨ c) → b and B = (t ∨ c) ∧ b from Example 3.2 are:

ModΣ(A) = { tcb, tcb, tcb, tcb, tcb } ModΣ(B) = { tcb, tcb, tcb }

Several model marginalizations of ModΣ(A) and ModΣ(B) are:

ModMgΣ(ModΣ(A), {c, b}) = { cb, cb, cb }
ModMgΣ(ModΣ(A), {t, b}) = { tb, tb, tb }
ModMgΣ(ModΣ(A), {t, c}) = { tc, tc, tc, tc }
ModMgΣ(ModΣ(A), {b}) = { b, b }

ModMgΣ(ModΣ(B), {c, b}) = { cb, cb }
ModMgΣ(ModΣ(B), {t, b}) = { tb, tb }
ModMgΣ(ModΣ(B), {t, c}) = { tc, tc, tc }
ModMgΣ(ModΣ(B), {b}) = { b }

One can observe easily that ModMgΣ(ModΣ(A), {b}) is the same as the set of
models of Σ \VarForget(A, b), and analogously for ModMgΣ(ModΣ(B), {b}) and
Σ \VarForget(B, b) (cf. Example 3.2). We will see that this is no coincidence, as
both operations are two sides of the same coin.
Syntactic Marginalization. Note that variable forgetting is a syntactic op-
eration on formulas and model marginalization is a semantic operation on in-
terpretations. Moreover, variable forgetting takes the signature elements to be
removed as a parameter, while for marginalization the posterior sub-signature is
a parameter. To avoid this duality, we define syntactic marginalization as the
dual of variable forgetting.

Definition 3.5 (syntactic marginalization). Let A ∈ LΣ and let Γ ⊆ Σ.
The syntactic marginalization of A (from Σ) to Γ , written SynMgΣ(A,Γ ), is
VarForget(A,Σ \ Γ ).
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A
SynMgΣ(A,Γ )
= VarForget(A,Σ \ Γ )

ModΣ(A)
ModΓ (SynMgΣ(A,Γ ))
= ModMgΣ(ModΣ(A), Γ )

syntactic marginalization to Γ
(variable forgetting of Σ \ Γ )

Σ-models Γ -models

model marginalization to Γ

Fig. 1: Semantic compatibility between marginalization and variable forgetting.

The syntactic marginalization of a formula to a reduced signature is equivalent to
the formula obtained by forgetting all variables that are not in the subsignature4.
Interrelation. We obtain the following compatibility result for variable forget-
ting and marginalization which is closely related to known results on variable
forgetting [15]. Figure 1 provides an illustration of these interrelations.

Theorem 3.6. For every A ∈ LΣ and Γ ⊆ Σ the following holds:

ModMgΣ(ModΣ(A), Γ ) = ModΓ (SynMgΣ(A,Γ ))

= ModΓ (VarForget(A,Σ \ Γ ))

As a first consequence of Theorem 3.6, we obtain that despite syntactic marginal-
ization being a pure syntactic operation, syntactic marginalization yields semantic
equivalent results for semantic equivalent formulas and complies with entailment.

Corollary 3.7. Let A,B ∈ LΣ and let Γ ⊆ Σ. The following statements hold:

(a) If A ≡Σ B, then we have SynMgΣ(A,Γ ) ≡Γ SynMgΣ(B,Γ ).
(b) If A |=Σ B, then we have SynMgΣ(A,Γ ) |=Γ SynMgΣ(B,Γ ).

Because (model and syntactic) marginalization and variable forgetting comply
with each other semantically, in the following sections we continue to present
results from the viewpoint of syntactic marginalization. Cleary, due to Theorem 3.6
these results also carry over to variable forgetting and model marginalization.

4 Marginalization and Minimal Sets of Atoms

Before investigating syntactic marginalization in more detail, we show that
Sigmin(A) is the set of those atoms that distinguish models of A from non-models
of A by exactly one signature element.

Proposition 4.1. For each propositional formula A ∈ LΣ we have:

Sigmin(A) = {a ∈ Σ | ∃ω1, ω2 ∈ Ω. ω1 |=Σ A and ω2 ̸|=Σ A and ω
Σ\{a}
1 = ω

Σ\{a}
2 }

4 We thank the anonymous reviewer for phrasing this interrelation so nicely.
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A ∨B SynMgΣ(A ∨B,Γ )

SynMgΣ(A,Γ )∨SynMgΣ(B,Γ )
SynMgΣ(A ∨B,Γ )
≡Γ SynMgΣ(A,Γ )∨SynMgΣ(B,Γ )

syntactic marginalization to Γ

syntactic
marginlization

to Γ in
disjuncts

Γ -models

Γ -models

Fig. 2: Semantic compatibility between disjunction and syntactic marginalization.

Proposition 4.1 formally underpins the intuition that a minimal formula (in terms
of different atoms) is required to make use of exactly those atoms which can be
distinguished semantically.

From Theorem 3.6 and Proposition 4.1, we obtain the following connection
between syntactic marginalization and Sigmin(A).

Proposition 4.2. Let Σ and Γ be signatures with Γ ⊆ Σ and let A ∈ LΣ. The
following statements hold:

(a) We have that Sigmin(SynMgΣ(A,Γ )) ⊆ Sigmin(A) ∩ Γ holds.
(b) We have that a ∈ Sigmin(A) if and only if A ̸≡Σ SynMgΣ(A,Σ \ {a}) holds.
(c) If A is consistent, then Γ∩Sigmin(A) = ∅ if and only if SynMgΣ(A,Γ ) ≡Σ ⊤.

5 Compatibility of Syntactic Marginalization with
Connectives

We now investigate the compatibility of syntactic marginalization with the stan-
dard connectives of propositional logic. The compatibility with disjunction and
conjunction over finite signatures was investigated for propositional logic from
the perspective for variable forgetting by Zhang and Zhou [27]. We show that
syntactic marginalization is fully compatible with disjunctions and only partially
compatible with the ∧ connective and also with the ¬ connective of propositional
logic both for finite and infinite signatures. We start with the compatibility of
syntactic marginalization with disjunction.

Proposition 5.1. For each A ≡Σ A1 ∨ . . . ∨ An with A,A1, . . . An ∈ LΣ and
each Γ ⊆ Σ the following holds:

SynMgΣ(A,Γ ) ≡Γ SynMgΣ(A1, Γ ) ∨ . . . ∨ SynMgΣ(An, Γ )

For conjunction we consider both directions of semantic equivalence separately.
In general syntactic marginalization and conjuncts are not compatible; however,
the following proposition shows that one direction of semantic equivalence holds.

Proposition 5.2. For each A,A1, . . . An ∈ LΣ with A ≡Σ A1 ∧ . . . ∧ An and
for each Γ ⊆ Σ the following holds:

ModΓ (SynMgΣ(A,Γ )) ⊆ ModΓ (SynMgΣ(A1, Γ ) ∧ . . . ∧ SynMgΣ(An, Γ )) (1)
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A ∧B SynMgΣ(A ∧B,Γ )

SynMgΣ(A,Γ )∧ SynMgΣ(B,Γ )

ModΓ (SynMgΣ(A ∧B,Γ ))

ModΓ (SynMgΣ(A,Γ )∧SynMgΣ(B,Γ ))

syntactic marginalization to Γ

syntactic
marginalization

to Γ
of conjuncts

Γ -models

Γ -models

⊆
or

⊊

Fig. 3: Semantic relations between conjunction and syntactic marginalization
with respect to Γ . The relation between Γ -models of SynMgΣ(A ∧B,Γ ) and of
SynMgΣ(A,Γ )∧SynMgΣ(B,Γ ) is a subset-relation (represented by the dashed
arrow); in certain cases this subset-relation is strict.

The converse direction of Equation (3) in Proposition 5.2 does not hold in
general. In the following proposition, we present this claim formally.

Proposition 5.3. Let Σ be a signature with three or more elements. There exist
A,A1, . . . An ∈ LΣ with A ≡Σ A1 ∧ . . . ∧An and Γ ⊆ Σ such that:

ModΓ (SynMgΣ(A1, Γ ) ∧ . . . ∧ SynMgΣ(An, Γ )) ̸⊆ ModΓ (SynMgΣ(A,Γ ))

Figure 3 illustrates and summarizes our observations on the compatibility between
conjunction and syntactic marginalization. Next, we consider an example on
Proposition 5.3.

Example 5.4. Suppose that Σ = {a, s, f} is a signature, where a has the intended
meaning “is an animal”, and s stands for “can swim”, and f stands for “has fins”.
We consider the formulas A = a ∧ s ∧ f (“It is an animal that can swim and has
fins.”), A1 = a ∧ (s ↔ f) (“It is an animal and it can swim if and only if it has
fins.”) and A2 = a∧f (“It is an animal with fins.”). The syntactic marginalizations
of these formulas to Γ = {a, s} are:

SynMgΣ(A,Γ ) = (a ∧ s ∧ ⊤) ∨ (a ∧ s ∧ ⊥) ≡ a ∧ s
(“It is an animal that can swim.”)

SynMgΣ(A1, Γ ) = (a ∧ (s ↔ ⊤)) ∨ (a ∧ (s ↔ ⊥)) ≡ a (“It is an animal.”)
SynMgΣ(A2, Γ ) = (a ∧ ⊤) ∨ (a ∧ ⊥) ≡ a (“It is an animal.”)

We observe that A ≡ A1 ∧A2 holds, yet SynMgΣ(A,Γ ) differs semantically from
SynMgΣ(A1, Γ ) ∧ SynMgΣ(A2, Γ ). More intuitively speaking, the information
about s, which is clearly stated in A, has got lost in the forgetting of f from
A1 ∧ A2. This is because the conjunction A1 ∧ A2 encodes the truth of s via a
dependence of s from f , which is forgotten.
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¬A SynMgΣ(¬A,Γ )

¬SynMgΣ(A,Γ )

ModΓ (SynMgΣ(¬A,Γ ))

ModΓ (¬ SynMgΣ(A,Γ ))

syntactic marginalization to Γ

syntactic
marginalization

to Γ of A

Γ -models

Γ -models

⊆
or

⊊

Fig. 4: Semantic relations between negation and syntactic marginalization
with respect to Γ . The relation between Γ -models of SynMgΣ(A,Γ ) and of
¬SynMgΣ(A,Γ ) is a subset-relation (represented by the dashed arrow); in cer-
tain cases this subset-relation is strict.

For the case of negation we obtain results analogue to the case of conjunction.
Syntactic marginalization is in general not fully compatible with negation; however,
the following proposition attests that one direction of semantic equivalence holds.

Proposition 5.5. For all A,B ∈ LΣ with A ≡Σ ¬B and for all Γ ⊆ Σ we have:

ModΓ (¬(SynMgΣ(B,Γ ))) ⊆ ModΓ (SynMgΣ(A,Γ ))

The next proposition states that the inclusion (9) in Proposition 5.5 is sometimes
strict. In contrast to conjunction, the incompatibility arizes already for signatures
of size two.

Proposition 5.6. Let Σ be a signature with two or more elements and let Γ ⊊ Σ
be a strict subsignature. There are formulas A,B ∈ LΣ with A ≡Σ ¬B such that:

ModΓ (SynMgΣ(A,Γ )) ̸⊆ ModΓ (¬SynMgΣ(B,Γ ))

Figure 4 summarizes the results presented here on the compatibility of marginal-
ization and Boolean negation.

Example 5.7. Suppose that Σ = {d, s, c} is a signature, where d has the intended
meaning “is a doctor”, and s stands for “wears a stethoscope”, and c stands for
“wears a doctor’s coat”. We consider the formulas A = d → (s ∨ c) (“A doctor
wears a stethoscope or a coat.”) and B = d ∧ ¬s ∧ ¬c (“A doctor without a
stethoscope who wears no coat.”). The syntactic marginalizations to Γ = {d, s}
of these formulas are:

SynMgΣ(A,Γ ) = (d → (s ∨ ⊤)) ∨ (d → (s ∨ ⊥)) ≡ ⊤ (“Tautology.”)
SynMgΣ(B,Γ ) = (d ∧ ¬s ∧ ⊤) ∨ (d ∧ ¬s ∧ ⊥) ≡ d ∧ ¬s

(“A doctor without a stethoscope.”)
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Clearly, we can observe that A ≡ ¬B holds, yet SynMgΣ(A,Γ ) differs semantically
from ¬ SynMgΣ(B,Γ ).

Recall that minimal signatures are invariant under negation, i.e., we have Sigmin(A) =
Sigmin(¬A) for each formula A. A consequence of this and Proposition 5.6 (which
is also witnessed by Example 5.7) is that the result of syntactic marginalization de-
pends on semantic content, and not just on the atoms required for representation.

Corollary 5.8. For each signature Σ with two or more elements, there exist
formulas A,B ∈ LΣ with Sigmin(A) = Sigmin(B) such that SynMgΣ(A,Γ ) ̸=
SynMgΣ(B,Γ ).

Another consequence of the results given above is the following result on syntactic
marginalization and implication.

Proposition 5.9. For each A,B,C ∈ LΣ with A ≡Σ B → C and for each
Γ ⊆ Σ the following holds:

ModΓ (SynMgΣ(B,Γ ) → SynMgΣ(C, Γ )) ⊆ ModΓ (SynMgΣ(A,Γ ))

However, as in the case of conjunction and negation, syntactic marginalization
does not comply with implication.

Example 5.10. Let Σ = {a, b, . . .} and let Γ ⊆ Σ be a subsignature such that
a /∈ Γ and b ∈ Γ . We choose the formulas A = a∧ b and B = ¬a∨¬b and C = ⊥.
One can observe easily that A ≡Σ B → C = ¬B ∨ C holds.

SynMgΣ(A,Γ ) = (⊤ ∧ b) ∨ (⊥ ∧ b) ≡Γ b

SynMgΣ(B,Γ ) = (¬⊤ ∨ ¬b) ∨ (¬⊥ ∨ ¬b) ≡Γ ⊤
SynMgΣ(C, Γ ) = ⊥
SynMgΣ(A,Γ ) ≡Γ b ̸≡Γ SynMgΣ(B,Γ ) → SynMgΣ(C, Γ ) ≡Γ ⊥

Thus, we obtain ModΓ (SynMgΣ(A,Γ )) ̸⊆ ModΓ (¬SynMgΣ(B,Γ )).

Proposition 5.11. Let Σ be a signature with two or more elements and let Γ ⊊
Σ be a strict subsignature. There are formulas A,B,C ∈ LΣ with A ≡ B → C
such that:

SynMgΣ(A,Γ ) ̸≡ SynMgΣ(B,Γ ) → SynMgΣ(C, Γ )

In summary, we showed that marginalization is not fully compatible with standard
connectives of propositional logic both for finite and infinite signatures, whereby
disjunction can be listed as the only mentionable exception (see Table 1).

6 Marginalization and Variable Forgetting for Sets of
Formulas

In this section, we investigate and discuss marginalization and variable forgetting
for finite and infinite sets of formulas and for finite and infinite signatures. For
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Connective Compatibility Counterexample

∨ ≡ (Proposition 5.1) fully compatible
∧ |= (Proposition 5.2) Proposition 5.3 / Example 5.4
¬ |=(Proposition 5.5) Proposition 5.6 / Example 4
→ |=(Proposition 5.9) Proposition 5.11 / Example 5.10

Table 1: Overview of the compatibility of syntactic marginalization, respectively
variable forgetting, with connectives of propositional logic. Here, ≡ stands for full
compatibility; |= expresses that marginalization of the full formula implies the
formula obtained by marginalizing the components of the connective; analogously,

|=expresses that marginalization of the components of the connectives implies
the marginalized formula.

that, we will use results obtained in Section 5. While some results seem rather
straightforward to obtain technically, these results are not trivial because one
might fall quickly into the trap of thinking that marginalization behaves very
intuitively for sets of propositional formulas. In particular, we will see that one
has to be careful about representation, e.g., syntactic structure, when performing
marginalization or variable forgetting, respectively.

Element-Wise Marginalization for Sets. In order to lift syntactic marginal-
ization of a formula to sets of formulas a natural choice is element-wise marginal-
ization of each single formula.

Definition 6.1 (element-wise marginalization). Let X ⊆ LΣ be a set of
formula and Γ ⊆ Σ. The element-wise marginalization of X (from Σ) to Γ ,
written EWSynMgΣ(X,Γ ), is given by EWSynMgΣ(X,Γ ) = {SynMgΣ(B,Γ ) |
B ∈ X}.

One can see that EWSynMgΣ(X,Γ ) is always well-defined, even for those cases
where X, Σ or Γ are infinite. This is mainly due to the fact that SynMgΣ(B,Γ )
is a well-defined propositional formula for any formula B (cf. Section 3).

Similarly to Definition 6.1, we define a notion of element-wise variable forget-
ting for a set of formulas as EWVarForget(X,Γ ) = {VarForget(B,Γ ) | B ∈ X}.
In Section 3, we have seen that variable forgetting and marginalization are corre-
sponding operations on formulas, and from this correspondence we easily obtain
that EWSynMgΣ(X,Γ ) = EWVarForget(X,Σ \ Γ ) holds. Because of this, in
this section and in the following sections, we will take the viewpoint of (syntactic)
marginalization.

Recall that the semantics for a set of formulas is given by intersection, which
corresponds to conjunction in the case of finite sets of formulas. We will see in the
following that due to Proposition 5.3 the notion of element-wise marginalization
behaves already very unexpectedly on finite sets and does not seem to be an
adequate way to define syntactic marginalization of sets of formulas.
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Proposition 6.2. Let Σ be a signature with three or more elements. There is a
finite set of formulas X ⊆ LΣ and a signature Γ ⊆ Σ such that for every formula
A ∈ LΣ with A ≡Σ X we obtain:

EWSynMgΣ(X,Γ ) ̸|=Γ SynMgΣ(A,Γ )

Proposition 6.2 shows that element-wise marginalization of sets of formulas is
not reducible to syntactic marginalization of an equivalent formula. However, the
syntactic marginalization of a formula equivalent to a set of formulas is complete,
in the sense that every logical consequence of the element-wise marginalization is
also a logical consequence of the syntactic marginalization of a corresponding
formula. The following proposition attests this observation.

Proposition 6.3. Let X ⊆ LΣ be an arbitrary set of formulas, A ∈ LΣ be a
formula and Γ ⊆ Σ. If A ≡Σ X, then SynMgΣ(A,Γ ) |=Γ EWSynMgΣ(X,Γ ).

We continue by demonstrating how the incompatibility of conjunction with
syntactic marginalization carries over to sets of formulas.

Example 6.4. Let Σ = {a, s, f} be the signature from Example 5.4 and let
A = a∧s∧f and A1 = a∧(s ↔ f) and A2 = a∧f be the formulas from the same
example. As shown before, for Γ = {a, s} we have SynMgΣ(A,Γ ) ≡Γ a ∧ s and
SynMgΣ(A1, Γ ) ≡Γ SynMgΣ(A2, Γ ) ≡Γ a. This renders SynMgΣ(A,Γ ) to be
semantically different to SynMgΣ(A1, Γ ) ∧ SynMgΣ(A2, Γ ). We reproduce this
result by using sets of formulas. Let X = {A1, A2} be the set containing A1 and
A2, which is equivalent to A, i.e., X ≡Σ A. Applying element-wise marginalization
to X yields EWSynMgΣ(X,Γ ) = {SynMgΣ(A1, Γ ),SynMgΣ(A2, Γ )} ≡Γ {a},
which is semantically different from SynMgΣ(A,Γ ).

Infinite Signatures. For a set of formulas X ⊆ LΣ , we say that X is finitely
representable over Σ if there is a formulas A ∈ LΣ such that X ≡Σ A. Clearly, if
Σ is finite, we have that X is finitely representable. But in general, not every set
of formulas is finitely representable when the signature is infinite. This give rise
to representational problems that carry over to syntactic marginalization as well.

Example 6.5. Let Σ = {a, a1, a2, a3, . . .} be an infinite signature. We consider
the set of formulas X = {a, aa1, aa2, , aa3, , aa4 . . .}. First, note that X is in-
consistent, i.e., ModΣ(X) = ∅. This is because the formula a is inconsistent
with all other formulas a ∧ ai in X. Clearly, X is finitely representable, e.g.,
by employing the formula ⊥. Now let Γ = {a1, a2, . . .} be the subsignature of
Σ which contains every atom of Σ except a. The syntactic marginalization of
a to Γ is SynMgΣ(a, Γ ) = ⊤ ∨ ⊥ and the syntactic marginalization of each
a ∧ ai ∈ X to Γ is SynMgΣ(a ∧ ai, Γ ) = (⊤ ∧ ai) ∨ (⊥ ∧ ai). Consequently,
we have SynMgΣ(a, Γ ) ≡Γ ⊤ and SynMgΣ(aai, Γ ) ≡Γ ai. Hence, we have
SynMgΣ(X,Γ ) ≡Γ {a1, a2, . . .}, implying that SynMgΣ(X,Γ ) ≡Γ {a1, a2, . . .}
is not finitely representable over Γ .

The following proposition is an implication of the observation made in Example 6.5.
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Proposition 6.6. If Σ is infinite, then there is a set of formulas X ⊆ LΣ and
a subsignature Γ such that EWSynMgΣ(X,Γ ) is not not finitely representable,
even when X is finitely representable.

Nevertheless, note that even for sets of formulas that are not finitely repre-
sentable, we can always obtain a finite representation for marginalizations to
finite signatures.

Proposition 6.7. Let X ⊆ LΣ be a set of formulas and let Γ ⊆ Σ be a subsig-
nature. If Γ is finite, then EWSynMgΣ(X,Γ ) is finitely representable over Γ .

This section provides evidence that it is not obvious how marginalization and
variable forgetting can be implemented on representations of sets of formulas. For
infinite signatures, we showed that in the basic case, where the target subsignature
is finite, the existence of representations of the marginalization of sets of formulas
is guaranteed.

7 Marginalization for Deductively Closed Sets of Formulas

We will now review syntactic marginalization for deductively closed sets of
formulas. In particular, Proposition 6.2 does not apply to deductively closed sets,
and we can show that marginalization is indeed a useful and adequate notion for
deductively closed sets.

Proposition 7.1. Let X ⊆ LΣ be a deductive closed set of formulas, let A ∈ LΣ

be a formula and Γ ⊆ Σ. If A ≡Σ X, then EWSynMgΣ(X,Γ ) |=Γ SynMgΣ(A,Γ ).

From Propositions 6.3 and 7.1 we obtain the following central observation.

Corollary 7.2. Let X ⊆ LΣ be a deductively closed set of formulas and let
A ∈ LΣ be a formula. If A ≡Σ X, then for every Γ ⊆ Σ, we have:

EWSynMgΣ(X,Γ ) ≡Γ SynMgΣ(A,Γ )

Clearly, Corollary 7.2 implies that the deductive closures of EWSynMgΣ(X,Γ )
and SynMgΣ(A,Γ ) are the same, i.e.

CnΓ (EWSynMgΣ(X,Γ )) = CnΓ (SynMgΣ(A,Γ )).

However, in general, element-wise marginalization of a deductively closed set to
Γ does not yield a deductively closed set. This is because EWSynMgΣ(X,Γ )
does not contain all syntactic equivalent formulas. Thus, after element-wise
application of marginalization we have to apply deductive closure to obtain a
deductively closed set. This gives the rationale for the following notion of syntactic
marginalization of deductively closed sets.

Definition 7.3. Let X ⊆ LΣ be a deductively closed set and Γ ⊆ Σ. The
syntactic marginalization of X from Σ to Γ , written SynMgΣ(X,Γ ), is

SynMgΣ(X,Γ ) = CnΓ (EWSynMgΣ(X,Γ )) ,

the deductive closure of the element-wise marginalization of X to Γ .
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X with CnΣ(X) = X A

EWSynMgΣ(X,Γ ) SynMgΣ(A,Γ )

SynMgΣ(X,Γ ) = CnΓ (SynMgΣ(A,Γ ))

Σ-equivalence ≡Σ

element-wise
marginalization

syntactic
marginalization

Γ -equivalence ≡Σ

Γ -closure CnΓ Γ -closure CnΓ

Fig. 5: Relations for a deductively closed set X and an equivalent formula A
between element-wise marginalization, syntactic marginalization for a deductively
closed set and syntactic marginalization for formula.

The following theorem describes that for a deductively closed set X, the syn-
tactic marginalization of a representation of X and the syntactic marginalization
of X comply with each other, semantically.

Theorem 7.4 (Representation Theorem for Marginalization). For every
deductively closed set X ⊆ LΣ and every formula A ∈ LΣ representing X, i.e.,
X ≡Σ A, and every Γ ⊆ Σ, we have:

SynMgΣ(X,Γ ) = CnΓ (SynMgΣ(A,Γ ))

Figure 5 illustrates the compatibility between syntactic marginalization for
formulas and syntactic marginalization for deductively closed sets. We continue
with an example of syntactic marginalisation of deductively closed sets.

Example 7.5. Consider the signature Σ = {a, s, f} from Example 5.4, and
let A,A1, A2 as in Example 5.4. As explained in Example 6.4, we have that
X = {A1, A2} is semantically equivalent to A, i.e., we have X ≡Σ A. Further-
more, we already observed that of Γ = {a, s} the element-wise marginalzation
of X differs semantically from the syntactic marginalization of A, i.e., we have
EWSynMgΣ(X,Γ ) ̸≡Γ SynMgΣ(A,Γ ). However, when considering Cn(X), the
situation is different. Theorem 7.4 guarantees that we have SynMgΣ(Cn(X), Γ ) ≡Γ

SynMgΣ(A,Γ ). One reason for this last observation is that Cn(X) does also
contain A, consequently, SynMgΣ(Cn(X), Γ ) contains also SynMgΣ(A,Γ ).

Note that the concept introduced in Definition 7.3 and the result of Theo-
rem 7.4 is of importance for potential application in many areas of knowledge
representation. For instance, in syntax-splitting, belief revision and non-monotonic
reasoning, deductively closed sets are often used to model agents’ beliefs (also
called belief sets). The incompatibility results from Section 5 and Section 6
indicate that marginalization and variable forgetting are not easily applicable
techniques in the areas mentioned above, yet the results obtained in this section
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point out that this is not the case. Theorem 7.4 shows that formulas are an
adequate finite representation for an agent’s belief set when one wants to perform
marginalization or variable forgetting on the agent’s beliefs. Clearly, while this is
always true in the case of finite signatures, for infinite signatures, this statement
applies only to those belief sets that are finitely representable.

8 Applications of the Marginalization of Deductively
Closed Sets

We consider some basic applications of the notion of syntactic marginalization.
Notions of forgetting. Another approach to forgetting is due to Delgrande
[4] in which he proposes to understand forgetting of variables as a reduction to
a sublanguage, i.e. forget(X,Γ ) = X ∩ LΣ\Γ . We show that the approach by
Delgrande complies with the notion of syntactic marginalization developed here.

Theorem 8.1 (Extended Representation Theorem for Marginalization).
Let X ⊆ LΣ be a deductively closed set and A ∈ LΣ be a formula representing
X, i.e. X ≡Σ A, then the following holds:

SynMgΣ(X,Γ ) = CnΓ (SynMgΣ(A,Γ )) = X ∩ LΓ

By Theorem 8.1, the extended representation theorem for deductively closed sets,
we obtain different characterizations for syntactic marginalization for deductively
closed sets and formulas equivalent to them.
Properties for Syntactic Marginalization. The following proposition sum-
marizes useful properties of syntactic marginalization of deductively closed sets.

Proposition 8.2. Let X ⊆ LΣ be a deductively closed set and let Γ ⊆ Σ and
Γ ′ ⊆ Σ be subsignatures of Σ. Syntactic marginalization satisfies the following
properties:
(Reduction) SynMgΣ(X,Γ ) ⊆ LΓ

(Inclusion) SynMgΣ(X,Γ ) ⊆ X

(Idempotency) SynMgΣ(X,Γ ) = SynMgΣ(SynMgΣ(X,Γ ), Γ )

(Monotonicity) If Γ ⊆ Γ ′ holds, then SynMgΣ(X,Γ ) ⊆ SynMgΣ(X,Γ ′)

Observe that (Inclusion), (Idempotency) and (Monotonicity) from Proposition 8.2
are properties that are similar to the properties of an interior operator, which
are dual to closure operators, i.e., Tarskian consequence relations5.
Marginalization for Ordinal Conditional Functions. In knowledge rep-
resentation and reasoning, the representation of an agent’s epistemic state is
often realized by ordinal conditional functions [23], also called ranking func-
tions. A ranking function is a function κ : ΩΣ → N0 such that there is at
5 Closure operators satisfy (Monotonicity), (Idempotency) and (Extensitivity), i.e.,
X ⊆ Cl(X).
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least one interpretation ω with κ(ω) = 0. The ranks assigned by such a κ are
understood as degrees of implausibility, where the rank 0 stands for the most
plausible rank. The belief set induced by a ranking function κ is the set of
formulas Bel(κ) = {α ∈ LΣ | {ω | κ(ω) = 0} ⊆ ModΣ(α)}, i.e., all Σ-formulas
whose models are a superset of the most plausible models according to κ. The
marginalization of κ to a subsignature Γ is defined as κ|Γ : ΩΓ → N0 with
κ|Γ (ω) = min{κ(ωΣ) | ωΣ ∈ ΩΣ , ω

Γ
Σ = ω}. Using Theorem 3.6 and Theorem 7.4,

the following proposition relates Bel(κ) and Bel(κ|Γ ).
Proposition 8.3. For every ranking function κ : ΩΣ → N0 and every subsigna-
ture Γ ⊆ Ω we have:

SynMgΣ(Bel(κ), Γ ) = Bel(κ|Γ )

Proposition 8.3 shows that the belief set of the marginalized ranking function
coincides with the syntactically marginalized belief set of the original function.
This nicely established relationship between the belief sets Bel(κ) and Bel(κ|Γ )
in Proposition 8.3 relies on the property that belief sets are deductively closed.

9 Conclusion

In this paper, we show that syntactic variable forgetting and semantic marginal-
ization share the same basic technique, namely, aggregating the truth value of
formulas over all possible interpretations of the atoms to be forgotten respectively
to be suppressed. Semantically, marginalizing a possible world over an atom
is the same as forgetting this variable from the complete conjunction that has
this world as its only model. This can be successfully lifted to single formulas.
Due to this close correspondence, we interpret variable forgetting as a syntactic
marginalization operation.

However, we also point out clearly that one has to be careful when considering
sets of formulas because variable forgetting applied to each of the formulas does not
yield a result which is semantically equivalent to what one obtains after applying
variable forgetting to the conjunction of the formulas. This is due to the fact that
variable forgetting is not fully compatible with conjunction (and negation). Luckily
for many scenarios considered in knowledge representation, semantic equivalence
can be guaranteed here for deductively closed sets of formulas. In particular,
this provides a justification for using formulas as a marginalization-compatible
representation for deductively closed sets of formulas, as it is common, e.g., in
belief revision theory [9]. Furthermore, we show that syntactic marginalization
also complies with Delgrands’ forgetting approach [4], and we provide some basic
properties for syntactic marginalization.

We like to remark again that most properties and theorems for syntactic
marginalization in this paper carry over to variable forgetting and model marginal-
ization, as we showed that all these three operators yield semantically the same
results (in a dual way). In future work, we will consider the compatibility of syn-
tactic marginalization to different formalisms, like conditional logics or predicate
logics, other kinds of forgetting, see, e.g., [2], and their axiomatics [21,11,12].
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Supplementary Material

In the following, we give the proofs for the propositions and theorems given in
the paper. First, we state a helpful observation regarding the expansion of
signatures.

Observation 1 Let Θ, ∆, and Σ be signatures with Θ ⊆ ∆ ⊆ Σ and let A ∈ LΣ

be a formula with Sig(A) ⊆ Θ. Furthermore, let ω be a Θ-model of A and let
ω∆ ∈ Ω∆ be an ∆-interpretation. If the restriction of ω∆ to Θ coincide with ω,
i.e., ω = ωΘ

∆, then ω∆ is also a model of A, i.e., ω∆ ∈ Mod∆(A).

Theorem 3.6. For every A ∈ LΣ and Γ ⊆ Σ the following holds:

ModMgΣ(ModΣ(A), Γ ) = ModΓ (SynMgΣ(A,Γ ))

= ModΓ (VarForget(A,Σ \ Γ ))

Proof. By considering the definition of VarForget and SynMg we immediately ob-
tain VarForget(A,Σ\Γ ) = SynMgΣ(A,Γ ). We show thatModMgΣ(ModΣ(A), Γ ) =
ModΓ (VarForget(A,Σ \ Γ )) holds.

Considering the definition ofVarForget yields that we have VarForget(A,Σ \ Γ ) =
VarForget(A,Sig(A) \ Γ ). Consequently, we obtain that Sig(VarForget(A,Σ \ Γ ))
⊆ Sig(A)∩Γ holds. However, because including additional atoms does not change
modelhood (cf. Observation 1), we can safely focus on Σ-interpretations in the
following to show the statement. From Lang et al. [15, Col. 5] we obtain the
following observation:

ModΣ(VarForget(A,Σ \ Γ )) = ModΣ(A) ∪

{
ω2 ∈ ΩΣ

∣∣∣∣∣∃ω1 ∈ ModΣ(A)

with ωΓ
1 = ωΓ

2

}
(2)

Equation (2) implies that A is consistent (with respect to Σ-models) if and only if
VarForget(A,Σ \Γ ) is consistent. Moreover, we conclude from Equation (2) that
we have ω′ ∈ ModΓ (VarForget(A,Σ \ Γ )) if and only if there exist an interpreta-
tion ω ∈ ModΣ(A) with ω′ = ωΓ . By considering the definition of ModMg, we
obtain the desired result ModΓ (VarForget(A,Σ \ Γ )) = ModMgΣ(ModΣ(A), Γ )
from the last observation. ⊓⊔

Proposition 4.1. For each propositional formula A ∈ LΣ we have:

Sigmin(A) = {a ∈ Σ | ∃ω1, ω2 ∈ Ω. ω1 |=Σ A and ω2 ̸|=Σ A and ω
Σ\{a}
1 = ω

Σ\{a}
2 }

Proof. Let A be a propositional formula and let Y be the set

Y = {a ∈ Σ | ∃ω1, ω2 ∈ ΩΣ . ω1 |=Σ A and ω2 ̸|=Σ A and ω
Σ\{a}
1 = ω

Σ\{a}
2 }.

Note that Sig(A) is always finite, and consequently we have that Sigmin(A) is
also finite. We show that Sigmin(A) = Y holds. At first, we consider the case
of A ≡ ⊤ or A ≡ ⊥. In this case, we directly obtain Y = ∅ = Sigmin(A). For
the case of A ̸≡ ⊥ and A ̸≡ ⊤, i.e. A is contingent, we show the equivalence
Sigmin(A) = Y by showing for each set the inclusion of one into another:
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“⊆” To show that Y ⊆ Sigmin(A) holds, we make a case distinction with respect
to A. Towards a contradiction, assume a ∈ Y and a /∈ Sigmin(A). Let B
be a formula with B ≡Σ A and such that the atom a does not appear in
B. Because a does not appear in B, we have for each two interpretations
ω1, ω2 ∈ ΩΣ that ω

Σ\{a}
1 = ω

Σ\{a}
2 implies ω1 ∈ ModΣ(B) if and only if

ω2 ∈ ModΣ(B). Because we have ModΣ(A) = ModΣ(B), this contradicts
our assumption that a ∈ Y holds. We obtain that every formula B which is
equivalent to A makes use of each atom in Y and thus, Y ⊆ Sigmin(A). A
direct consequence is that Y is also a finite set.

“⊇” We show that Sigmin(A) ⊆ Y holds. We define a formula B ∈ LY in disjunctive
normal form as follows:

B =
∨

B′∈B
B′ where B =


 ∧

a∈Y
ω|=a

a

 ∧

 ∧
a∈Y
ω ̸|=a

¬a


∣∣∣∣∣∣∣∣ω ∈ ModΣ(A)


Because B uses only atoms from Y , we have Sigmin(B) ⊆ Sig(B) ⊆ Y .
Moreover, finiteness of Y implies finiteness of B, hence B is a propositional
formula. We show that B is equivalent to A by showing ModΣ(B) = ModΣ(A).
Clearly, by the construction of B, we obtain ModΣ(A) ⊆ ModΣ(B). We show
that the negation of ModΣ(B) ⊆ ModΣ(A) leads to a contradiction. For
this, we assume that there exists some ωB ∈ Mod(B) with ωB /∈ Mod(A).
By construction of B, there exists some ωA ∈ ModΣ(A) such that ωY

B = ωY
A

holds. We make a case-distinction:
The case of Y = Σ. Clearly, Y = Σ implies ωA = ωB which is a
contradiction to ωB /∈ ModΣ(A). Consequently, we have that Y ≠ Σ and
|Σ \ Y | ≠ 0 holds and that ωB ̸= ωA holds.
The case of |Σ \ Y | = 1. This case is impossible, because the existence
of ωB and ωA would imply the contradiction stating that a ∈ Σ \ Y and
a ∈ Y holds at the same time.
The case of |Σ \ Y | > 1. Let X = Σ \ Y = {a ∈ Σ | ω{a}

A ̸= ω
{a}
B }

be the set of all a ∈ Σ such that ω
{a}
A ̸= ω

{a}
B holds. Consequently, X

is non-empty. Now let Ω[Y ] = {ω ∈ ΩΣ | ωY = ωY
B} be the set of

all interpretations that agree with ωA regarding the valuation of the
elements in Y . Because ωY

A = ωY
B holds, we have ωA, ωB ∈ Ω[Y ] and

every interpretation in Ω[Y ] agrees with ωB regarding the valuation of
the elements in Y . Furthermore, by construction of B, we obtain that
Ω[Y ] ⊆ ModΣ(B) holds. Now let G = (Ω[Y ], E) be the undirected graph
with Ω[Y ] as vertices where two vertices ω1, ω2 ∈ Ω[Y ] are neighbours in
G if ω1 and ω2 disagree exactly in the valuation of one element from X,
i.e., {ω1, ω2} ∈ E if there exists exactly one a ∈ X such that ω{a}

1 ≠ ω
{a}
2

and ω
Σ\{a}
1 = ω

Σ\{a}
2 holds. It is easy to see, that G is connected, i.e., for

every two distinct vertices in G there is a path between these vertices in G.
As ωA, ωB are vertices of G, there are models of A in G and non-models
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of A in G. By considering G, one can observe that there exists a ∈ X
and there exist ω1, ω2 ∈ Ω[Y ] such that
(a) ω1 ∈ ModΣ(A) and ω2 /∈ ModΣ(A),
(b) ω

{a}
A = ω

{a}
1 ̸= ω

{a}
2 = ω

{a}
B , and

(c) ω
Σ\{a}
1 = ω

Σ\{a}
2

are satisfied. The latter holds because G is constructed in a way where
neighbours disagree on the valuation of exactly one a ∈ X, and on the path
from ωA to ωB in G, there must exist ω1, ω2 ∈ Ω[Y ] with ω1 ∈ ModΣ(A)
and ω2 /∈ ModΣ(A). Existence of ω1, ω2 that satisfy (a)–(c) implies that
a ∈ Y holds. This is a contradiction to a ∈ X = Σ \ Y .

This shows B is equivalent to A. From A ≡ B and Sigmin(B) ⊆ Y , we obtain
Sigmin(A) ⊆ Y .

In summary, this shows that Sigmin(A) = Y holds. ⊓⊔

Proposition 4.2. Let Σ and Γ be signatures with Γ ⊆ Σ and let A ∈ LΣ. The
following statements hold:

(a) We have that Sigmin(SynMgΣ(A,Γ )) ⊆ Sigmin(A) ∩ Γ holds.
(b) We have that a ∈ Sigmin(A) if and only if A ̸≡Σ SynMgΣ(A,Σ \ {a}) holds.
(c) If A is consistent, then Γ∩Sigmin(A) = ∅ if and only if SynMgΣ(A,Γ ) ≡Σ ⊤.

Proof. We consider the statements (a)–(c) step by step.

We start by showing that statement (a) holds.

Clearly, by definition of SynMg, we obtain Sig(SynMgΣ(A,Γ )) ⊆ Γ . Be-
cause Sig is always a upper bound for the minimal set of atoms Sigmin, we
directly obtain Sigmin(SynMgΣ(A,Γ )) ⊆ Sig(SynMgΣ(A,Γ )). It remains to
show that Sigmin(SynMgΣ(A,Γ )) ⊆ Sigmin(A) holds. There is a formula
A′ with A′ ≡ A and Sig(A′) = Sigmin(A

′) = Sigmin(A). By considering
the definition of SynMg we easily conclude that Sigmin(SynMgΣ(A

′, Γ )) ⊆
Sig(SynMgΣ(A′, Γ )) and Sig(SynMgΣ(A′, Γ )) ⊆ Sigmin(A

′) holds. From The-
orem 3.6 we obtain that SynMgΣ(A,Γ ) ≡ SynMgΣ(A′, Γ ) holds. By the ob-
servations shown above, we have Sigmin(SynMgΣ(A,Γ )) = Sigmin(SynMgΣ(A′, Γ ))
and Sigmin(A) = Sigmin(A

′) and Sigmin(SynMgΣ(A′, Γ )) ⊆ Sigmin(A
′). These

observations together show that Sigmin(SynMgΣ(A,Γ )) ⊆ Sigmin(A) holds.

We show that statement (b) holds. We consider each direction of the statement
independently.

“⇒”-direction. If a ∈ Sigmin(A) holds, then according to Proposition 4.1,
there are interpretations ω1, ω2 ∈ ΩΣ such that ω1 |= A and ω2 ̸|= A and
ω
Σ\{a}
1 = ω

Σ\{a}
2 . Clear, we have that SynMgΣ(A,Σ \ {a}) ⊆ Sig(A) \ {a}

holds. Because we have ω
Σ\{a}
1 = ω

Σ\{a}
2 , we have ω

Σ\{a}
1 |= SynMgΣ(A,Σ \

{a}) if and only if we have ω
Σ\{a}
2 |= SynMgΣ(A,Σ \ {a}). Consequently,

we either have ω1, ω2 ∈ ModΣ(SynMgΣ(A,Σ \ {a})) or we have ω1, ω2 /∈
ModΣ(SynMgΣ(A,Σ \ {a})). Because ω1 ∈ ModΣ(A) and ω2 /∈ ModΣ(A)
holds, the last observation implies A ̸≡Σ SynMgΣ(A,Σ \ {a}).
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“⇐”-direction. Assume that A ̸≡Σ SynMgΣ(A,Σ \ {a}) holds. Clearly, for
each ω ∈ ModΣ\{a}(SynMgΣ(A,Σ \ {a})) there are exactly two ω1, ω2 ∈
ΩΣ with ω = ω

Σ\{a}
1 = ω

Σ\{a}
2 and ω1(a) ̸= ω2(a). By considering the

definition of SynMg and by using Theorem 3.6, we obtain ModΣ(A) ⊆
ModΣ(SynMgΣ(A,Σ\{a})). From these observations andA ̸≡Σ SynMgΣ(A,Σ\
{a}), we conclude that ω1, ω2 ∈ ModΣ(SynMgΣ(A,Σ \ {a})) and ω1 ∈
ModΣ(A) and ω2 /∈ ModΣ(A) holds. Hence, from Proposition 4.1 we obtain
that a ∈ Sigmin(A) holds.

Next, we show that statement (c) holds. Let A ∈ LΣ be a consistent formula. We
consider each direction of the statement independently.

“⇒”-direction. Assume that Γ ∩ Sigmin(A) = ∅ holds. From (a) we obtain
that Sigmin(SynMgΣ(A,Γ )) = ∅ holds. Clearly, Sigmin(SynMgΣ(A,Γ )) = ∅
implies that SynMgΣ(A,Γ ) is either tautological or inconsistent. Theo-
rem 3.6 yields that SynMgΣ(A,Γ ) is consistent exactly if A is consistent.
Consequently, because A is consistent, we obtain the desired result that
SynMgΣ(A,Γ ) is tautological.
“⇐”-direction. Assume that SynMgΣ(A,Γ ) ≡Σ ⊤ holds. If A is tautological,
the statement is trivial. We consider the case where A is not tautological yet
consistent. For this case we have that Sigmin(A) ̸= ∅. Towards a contradiction
assume that Γ ∩ Sigmin(A) ̸= ∅ holds. Let a be an atom with a ∈ Γ ∩
Sigmin(A). From a ∈ Sigmin(A) we obtain that there are ω1, ω2 ∈ ΩΣ with
ω
Σ\{a}
1 = ω

Σ\{a}
2 and ω1(a) ̸= ω2(a) and ω1 |= A and ω2 ̸|= A. From

a ∈ Γ , we obtain that ωΓ
1 ≠ ωΓ

2 holds. By invoking Theorem 3.6, we obtain
ωΓ
2 /∈ ModΓ (SynMgΣ(A,Γ )) from ω2 ̸|= A. Consequently, we also have

ω2 /∈ ModΣ(SynMgΣ(A,Γ )). This last observation is a contradiction to
SynMgΣ(A,Γ ) ≡Σ ⊤. ⊓⊔

Proposition 5.1. For each A ≡Σ A1 ∨ . . . ∨ An with A,A1, . . . An ∈ LΣ and
each Γ ⊆ Σ the following holds:

SynMgΣ(A,Γ ) ≡Γ SynMgΣ(A1, Γ ) ∨ . . . ∨ SynMgΣ(An, Γ )

Proof. The equivalence follows from the definition of variable forgetting, commu-
tativity of ∨ and associativity of ∨. ⊓⊔

Proposition 5.2. For each A,A1, . . . An ∈ LΣ with A ≡Σ A1 ∧ . . .∧An and for
each Γ ⊆ Σ the following holds:

ModΓ (SynMgΣ(A,Γ )) ⊆ ModΓ (SynMgΣ(A1, Γ ) ∧ . . . ∧ SynMgΣ(An, Γ )) (3)

Proof. Observe that A ≡ A1 ∧ . . . ∧An if and only if ModΣ(A) = ModΣ(A1) ∩
. . . ∩ModΣ(An). Let ω′ be an interpretation from ModMgΣ(ModΣ(A), Γ ). By
Theorem 3.6 we obtain ω′ ∈ ModΓ (SynMgΣ(A,Γ )). By definition there exists
ω ∈ Mod(A) such that ω′ = ωΓ . By our assumptions, ω ∈ Mod(Ai) holds
for each i ∈ {1, . . . , n}. We obtain ω′ = ωΓ ∈ ModMgΣ(Mod(Ai), Γ ) for each
i ∈ {1, . . . , n}. Employing Theorem 3.6 again yields ω′ ∈ ModΓ (SynMgΣ(Ai, Γ )
for each i ∈ {1, . . . , n}. ⊓⊔
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Proposition 5.3. Let Σ be a signature with three or more elements. There exist
A,A1, . . . An ∈ LΣ with A ≡Σ A1 ∧ . . . ∧An and Γ ⊆ Σ such that:

ModΓ (SynMgΣ(A1, Γ ) ∧ . . . ∧ SynMgΣ(An, Γ )) ̸⊆ ModΓ (SynMgΣ(A,Γ ))

Proof. Consider the signature Σ = {a, b, c} and Γ = {a, b}. Let A = abc and
A1 = (abc) ∨ (abc) and A2 = (abc) ∨ (abc). Clearly, the formula A is equivalent
to A1 ∧ A2 with respect to Σ, i.e. A ≡Σ A1 ∧ A2. Syntactic marginalization
of A yields SynMgΣ(A,Γ ) ≡Γ ab. Moreover, we obtain SynMgΣ(A1, Γ ) ≡Γ a and
SynMgΣ(A2, Γ ) ≡Γ a. Consequently, we have SynMgΣ(A1, Γ )∧SynMgΣ(A2, Γ ) ≡Γ

a. In summary, we obtain

SynMgΣ(A,Γ ) ̸≡Γ SynMgΣ(A1, Γ ) ∧ SynMgΣ(A2, Γ ).

Because expansion of Σ by additional atoms does not change modelhood of any
interpretation considered here (cf. Observation 1), the considered example carries
over to any signature with three or more elements. ⊓⊔

Proposition 5.5. For all A,B ∈ LΣ with A ≡Σ ¬B and for all Γ ⊆ Σ we have:

ModΓ (¬(SynMgΣ(B,Γ ))) ⊆ ModΓ (SynMgΣ(A,Γ ))

Proof. Employing Thm. 3.6, the claim holds due to the following chain of obser-
vations:

ModΓ (¬(SynMgΣ(B,Γ ))) = ΩΓ \ModΓ (SynMgΣ(B,Γ ))

= ΩΓ \ModMgΣ(ModΣ(B), Γ )

= ΩΓ \ {ω′ ∈ ΩΓ | ∃ω ∈ ModΣ(B) with ω′ = ωΓ }
= {ω′ ∈ ΩΓ | ∀ω ∈ ModΣ(B) with ω′ ̸= ωΓ }
⊆ {ω′ ∈ ΩΓ | ∃ω ∈ ΩΣ \ModΣ(B) with ω′ = ωΓ }
= ModMgΣ(ΩΣ \ModΣ(B), Γ )

= ModMgΣ(ModΣ(A), Γ )

= ModΓ (SynMgΣ(A,Γ )) ⊓⊔

Proposition 5.6. Let Σ be a signature with two or more elements and let Γ ⊊ Σ
be a strict subsignature. There are formulas A,B ∈ LΣ with A ≡Σ ¬B such that:

ModΓ (SynMgΣ(A,Γ )) ̸⊆ ModΓ (¬SynMgΣ(B,Γ ))

Proof. Let Σ = {a, b, . . .} and let Γ ⊆ Σ such that a /∈ Γ and b ∈ Γ . We choose
the formulas A = ab and B = a ∨ b. Clearly, A ≡Σ ¬B holds. Consider the
following chain of observations:

SynMgΣ(A,Γ ) = (⊤b) ∨ (⊥b) ≡Γ b

SynMgΣ(B,Γ ) = (¬⊤ ∨ b) ∨ (¬⊥ ∨ b) ≡Γ ⊤
¬SynMgΣ(B,Γ ) ≡Γ ⊥ ̸≡Γ b ≡Γ SynMgΣ(A,Γ )

Thus, we obtain ModΓ (SynMgΣ(A,Γ )) ̸⊆ ModΓ (¬SynMgΣ(B,Γ )). ⊓⊔
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Proposition 5.9. For each A,B,C ∈ LΣ with A ≡Σ B → C and for each
Γ ⊆ Σ the following holds:

ModΓ (SynMgΣ(B,Γ ) → SynMgΣ(C, Γ )) ⊆ ModΓ (SynMgΣ(A,Γ ))

Proof. Let ω be a model of ModΓ (SynMgΣ(B,Γ ) → SynMgΣ(C, Γ )), i.e., we
have either ω ∈ ModΓ (¬SynMgΣ(B,Γ )) or we have ω ∈ ModΓ (SynMgΣ(C, Γ )).
We make a case distinction:

The “ω ∈ ModΓ (¬SynMgΣ(B,Γ ))” case. First, recall that due to Proposi-
tion 5.5 it holds that ModΓ (¬SynMgΣ(B,Γ )) ⊆ ModΓ (SynMgΣ(¬B,Γ )).
From Theorem 3.6 we obtain that there is some model ω¬B ∈ ModΣ(¬B)
such that ω = ωΓ

¬B. Because we have A ≡ B → C ≡ ¬B ∨ C, we conclude
that ω¬B is also a model of ModΣ(A). Consequently, Theorem 3.6 implies
that ωΓ

¬B is also a model of ModΓ (SynMgΣ(A,Γ )).
The “ω ∈ ModΓ (SynMgΣ(C, Γ ))” case. From Theorem 3.6 we obtain that there

is some model ωC ∈ ModΣ(¬C) such that ω = ωΓ
C . Because we have A ≡ B →

C ≡ ¬B∨C, we conclude that ωC is also a model of ModΣ(A). Consequently,
Theorem 3.6 implies that ωΓ

C is also a model of ModΓ (SynMgΣ(A,Γ )).

This completes the proof. ⊓⊔

Proposition 5.11. Let Σ be a signature with two or more elements and let Γ ⊊ Σ
be a strict subsignature. There are formulas A,B,C ∈ LΣ with A ≡ B → C such
that:

SynMgΣ(A,Γ ) ̸≡ SynMgΣ(B,Γ ) → SynMgΣ(C, Γ )

Proof. Let Σ = {a, b, . . .} and let be Γ ⊆ Σ a subsignature such that a /∈ Γ and
b ∈ Γ . We choose the formulas A = a ∧ b and B = a ∨ b and C = ⊥. One can
observe easily that A ≡Σ B → C = ¬B ∨ C holds.

SynMgΣ(A,Γ ) = (⊤ ∧ b) ∨ (⊥ ∧ b) ≡Γ b

SynMgΣ(B,Γ ) = (¬⊤ ∨ b) ∨ (¬⊥ ∨ b) ≡Γ ⊤
SynMgΣ(C, Γ ) = ⊥
SynMgΣ(A,Γ ) ≡Γ b ̸≡Γ SynMgΣ(B,Γ ) → SynMgΣ(C, Γ ) ≡Γ ⊥

Thus, we obtain ModΓ (SynMgΣ(A,Γ )) ̸⊆ ModΓ (¬SynMgΣ(B,Γ )). ⊓⊔

Proposition 6.2. Let Σ be a signature with three or more elements. There is a
finite set of formulas X ⊆ LΣ and a signature Γ ⊆ Σ such that for every formula
A ∈ LΣ with A ≡Σ X we obtain:

EWSynMgΣ(X,Γ ) ̸|=Γ SynMgΣ(A,Γ )

Proof. Let X = {A1, A2}, where A1 and A2 are the formulas from the proof of
Proposition 5.3. Note that by Theorem 3.6 the specific syntactic form of A does
not matter for the semantic compatibility between marginalization and variable
forgetting. Thus, we choose A as in the proof of Proposition 5.3. As a direct
consequence of the proof of Proposition 5.3 we obtain the desired result. ⊓⊔
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Proposition 6.3. Let X ⊆ LΣ be an arbitrary set of formulas, A ∈ LΣ be a
formula and Γ ⊆ Σ. If A ≡Σ X, then SynMgΣ(A,Γ ) |=Γ EWSynMgΣ(X,Γ ).

Proof. By using Theorem 3.6, we obtain:

ModΓ (SynMgΣ(A,Γ )) = {ωΓ | ω ∈ ModΣ(A)} = {ωΓ | ω ∈ ModΣ(X)}

For EWSynMg, again by using Theorem 3.6, we obtain the following equivalence:

ModΓ (EWSynMgΣ(X,Γ )) =
⋂

B∈X

ModΓ (SynMgΣ(B,Γ ))

=
⋂

B∈X

{ωΓ | ω ∈ ModΣ(B)}

Because we have ModΣ(X) ⊆ ModΣ(B) for each B ∈ X, we obtain the following
inclusion:

{ωΓ | ω ∈ ModΣ(X)} ⊆
⋂

B∈X

{ωΓ | ω ∈ ModΣ(B)}

The last inclusion implies the statement to be shown. ⊓⊔

Proposition 6.7. Let X ⊆ LΣ be a set of formulas and let Γ ⊆ Σ be a
subsignature. If Γ is finite, then EWSynMgΣ(X,Γ ) is finitely representable
over Γ .

Proof (sketch). Assume that Γ is finite. Because Γ is finite, there are only
finitely many ≡Γ -equivalent formulas in LΓ . Clearly, EWSynMgΣ(X,Γ ) is a
subset of LΓ , and thus, EWSynMgΣ(X,Γ ) ≡Γ A contains only finitely many
≡Γ -equivalent formulas. For each ≡Γ -equivalence class [Ai]≡Γ

which shares a
formula with EWSynMgΣ(X,Γ ), i.e., [Ai]≡Γ

∩EWSynMgΣ(X,Γ ) is non-empty,
select a unique representative formula Ai. The formula A is the conjunction of
all these finitely many Ai. One can easily check that EWSynMgΣ(X,Γ ) ≡Γ A
holds.

Proposition 7.1. Let X ⊆ LΣ be a deductive closed set of formulas, let A ∈ LΣ be
a formula and Γ ⊆ Σ. If A ≡Σ X, then EWSynMgΣ(X,Γ ) |=Γ SynMgΣ(A,Γ ).

Proof. Because of A ≡Σ X and X is deductively closed, we also have A ∈ X.
Consequently, we have SynMgΣ(A,Γ ) ∈ EWSynMgΣ(X,Γ ). It follows directly
that ModΓ (EWSynMgΣ(X,Γ )) ⊆ ModΓ (SynMgΣ(A,Γ )) holds. ⊓⊔

Theorem 7.4. For every deductively closed set X ⊆ LΣ and every formula
A ∈ LΣ representing X, i.e., X ≡Σ A, and every Γ ⊆ Σ, we have:

SynMgΣ(X,Γ ) = CnΓ (SynMgΣ(A,Γ ))

Proof. Because X is deductively closed and we have A ≡Σ X, we also have that
A ∈ X holds. Consequently, we also have that SynMgΣ(A,Γ ) ∈ SynMgΣ(X,Γ )
holds. Hence, we also have ModΓ (SynMgΣ(X,Γ )) ⊆ ModΓ (SynMgΣ(A,Γ )).
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We will show by contradiction thatModΓ (SynMgΣ(A,Γ )) ⊆ ModΓ (SynMgΣ(X,Γ ))
holds. For that, assume that there is some ω ∈ ΩΓ with

ModΓ (SynMgΣ(A,Γ )) and ω /∈ ModΓ (SynMgΣ(X,Γ )) .

Such an interpretation ω exists only if there is some formula B ∈ X with

SynMgΣ(B,Γ ) ∈ ModΓ (SynMgΣ(X,Γ ))

such that ω /∈ ModΓ (SynMgΣ(B,Γ )) holds. Using B ∈ X and X ≡Σ A, we
obtain that ModΣ(A) ⊆ ModΣ(B) holds. By using Collorary 3.7 (b), we obtain

ModΓ (SynMgΣ(A,Γ )) ⊆ ModΓ (SynMgΣ(B,Γ ))

from ModΣ(A) ⊆ ModΣ(B). Hence we have that ω /∈ ModΓ (SynMgΣ(B,Γ ))
and ω ∈ ModΓ (SynMgΣ(B,Γ )) hold at the same time, which is a contradiction.
We obtain that ModΓ (SynMgΣ(X,Γ )) = ModΓ (SynMgΣ(A,Γ )) holds. The
statment SynMgΣ(X,Γ ) = CnΓ (SynMgΣ(A,Γ )) is a consequence of the last
observation. ⊓⊔

Theorem 8.1. Let X ⊆ LΣ be a deductively closed set and A ∈ LΣ be a formula
representing X, i.e. X ≡Σ A, then the following holds:

SynMgΣ(X,Γ ) = CnΓ (SynMgΣ(A,Γ )) = X ∩ LΓ

Proof. Proposition 7.4 provides the first equality. We show the second equality
by proving SynMgΣ(X,Γ ) = X ∩ LΓ .

LetA a formula such thatA ≡Σ X. By Proposition 7.4 we obtain SynMgΣ(A,Γ ) ≡Γ

SynMgΣ(X,Γ ). Now observe that X ∩ LΓ = {B | B ∈ LΓ , B ∈ X}. Clearly, we
have for every B ∈ LΓ that B ∈ X if and only if A |=Σ B. A direct consequence
is SynMgΣ(A,Γ ) |=Γ B and therefore we obtain SynMgΣ(A,Γ ) |=Γ X ∩ LΓ .
Consequently, we obtain SynMgΣ(X,Γ ) |=Γ X ∩ LΓ .

Towards a contradiction suppose there is some ω′ ∈ ΩΓ with ω′ |=Γ X ∩ LΓ

and ω′ ̸|=Γ SynMgΣ(A,Γ ). This implies that ω′ |=Γ B for every B ∈ X ∩ LΓ .
By definition, there exist some ω ∈ ΩΣ such that ω′ = ωΓ and ω |=Σ X ∩ LΓ .
As consequence, we obtain the contradiction ωΓ |=Γ SynMgΣ(A,Γ ). Thus, we
have shown SynMgΣ(X,Γ ) ≡Γ X ∩LΓ . Note that SynMgΣ(X,Γ ) is deductively
closed. To see that X ∩LΓ is likewise deductively closed, observe as first step that
X ∩ LΓ is closed under logical equivalence. Moreover, observe that every logical
consequence B of X ∩ LΓ is also an element of X. Both observations together
complete the proof. ⊓⊔

Proposition 8.2. Let X ⊆ LΣ be a deductively closed set and let Γ ⊆ Σ and
Γ ′ ⊆ Σ be subsignatures of Σ. Syntactic marginalization satisfies the following
properties:
(Reduction) SynMgΣ(X,Γ ) ⊆ LΓ

(Inclusion) SynMgΣ(X,Γ ) ⊆ X

(Idempotency) SynMgΣ(X,Γ ) = SynMgΣ(SynMgΣ(X,Γ ), Γ )

(Monotonicity) If Γ ⊆ Γ ′ holds, then SynMgΣ(X,Γ ) ⊆ SynMgΣ(X,Γ ′)
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Proof. Satisfaction of (Success) and (Inclusion) is immediate due to Theorem 8.1.
Moreover, by Theorem 8.1 we obtain (Idempotency) from the set-theoretic
idempotency of intersection in X ∩LΓ = (X ∩LΓ )∩LΓ . From Γ ⊆ Γ ′ we obtain
LΓ ⊆ LΓ ′ , which carries over to X ∩ LΓ ⊆ X ∩ LΓ ′ . By using Theorem 8.1, we
obtain (Monotonicity) from X ∩ LΓ ⊆ X ∩ LΓ ′ . ⊓⊔

Proposition 8.3. For every ranking function κ : ΩΣ → N0 and every subsigna-
ture Γ ⊆ Ω we have:

SynMgΣ(Bel(κ), Γ ) = Bel(κ|Γ )

Proof. Note that Bel(κ) ⊆ LΣ and Bel(κ|Γ ) ⊆ LΓ are deductively closed sets
of formulas. Because of that and because of Theorem 3.6 and Theorem 7.4 it is
sufficient to show that

ModMgΣ(ModΣ(Bel(κ)), Γ ) = ModΓ (Bel(κ|Γ )) (4)

holds. Observe that for the marginalization of ranking functions, it holds that:

ModΓ (Bel(κ|Γ )) = {ω′ ∈ ΩΓ | κ|Γ (ω′) = 0}
= {ωΓ | ω ∈ ΩΣ and κ(ω) = 0} (5)

From considering the definition of ModMg and Bel(κ) we obtain the following
equivalences:

ModMgΣ(ModΣ(Bel(κ)), Γ ) = {ωΓ | ω ∈ ModΣ(Bel(κ))}
= {ωΓ | ω ∈ ΩΣ and κ(ω) = 0} (6)

From Equation (5) and Equation (6), we obtain Equation (4) which was to be
shown. ⊓⊔
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